Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Analytical Method Evaluation

As shown in Figure 11, before extensive validation, the performance of the method is evaluated appropriately. Column durability tests, robustness testing for the chromatographic and sample preparation conditions, analytical method evaluation ring tests (AMERTs), method capability assessments, and pre-validation studies are applied to... [Pg.170]

M. C. Ortiz, L. A. Sarabia, A. Herrero, M. S. Sanchez, M. B. Sanz, M. E. Rueda, D. Gimenez and M. E. Melendez, Capability of detection of an analytical method evaluating false positive and false negative (ISO 11843) with partial least squares, Chemom. Intell. Lab. Syst., 69, 2003, 21-33. [Pg.240]

At the conclusion of development, when methods are locked, it is becoming more common for the analysts to ask the quality unit for input and comment on the proposed method package before final validation. Such a method test drive can avoid problems with the formal transfer taking place later. This process has been termed an analytical method evaluation ring test (AMERT) by Crowther and associates and was presented and described elsewhere. In brief, this process allows the quality unit to make comments and suggestions to their R D colleagues before the final validation of the method. It is also becoming more common for the quality unit to approve method validation protocols. This provides the quality unit with an opportunity to ensure that the method meets the performance expectations to enable routine use in the quality environment. In some cases, covalidation by the R D and Quality Units (discussed below) replaces formal method transfer. Thus, the frequently seen throw the method over the fence syndrome is avoided. [Pg.509]

DeWalle, F, B., Zeisig, T., Sung, J. F. C. etal. 1981. Analytical methods evaluation for applicability in leachate analysis. Municipal Environmental Research Laboratory Office of Research and Development. US Environmental Protection Agency, Cincinnati, Ohio, 1-12. [Pg.140]

Wood, T. E., Analytical methods, evaluation techniques, and regulatory requirements, in L. Spitz, ed.. Soap Technology for the 1990 s, American Oil Chemists Society, Champaign, IL, 1990. [Pg.57]

Furthermore, molecular analysis is absolutely necessary for the petroleum industry in order to interpret the chemical processes being used and to evaluate the efficiency of treatments whether they be thermal or catalytic. This chapter will therefore present physical analytical methods used in the molecular characterization of petroleum. [Pg.39]

The finite element solution of differential equations requires function integration over element domains. Evaluation of integrals over elemental domains by analytical methods can be tedious and impractical and is not attempted in... [Pg.38]

Valcarcel, M. Tuque de Castro, M. D. A Hierarchical Approach to Analytical Chemistry, Trends Anal. Chem., 1995,14, 242-250. Further details on evaluating analytical methods may be found in Wilson, A. L. The Performance-Characteristics of Analytical Methods, Part l-Talanta, 1970, 17, 21-29 Part ll-Talanta, 1970, 17, 31M4 Part lll-Talanta, 1973, 20, 725-732 Part IV-Talanta, 1974,21, 1109-1121. [Pg.52]

When designing and evaluating an analytical method, we usually make three separate considerations of experimental error. First, before beginning an analysis, errors associated with each measurement are evaluated to ensure that their cumulative effect will not limit the utility of the analysis. Errors known or believed to affect the result can then be minimized. Second, during the analysis the measurement process is monitored, ensuring that it remains under control. Finally, at the end of the analysis the quality of the measurements and the result are evaluated and compared with the original design criteria. This chapter is an introduction to the sources and evaluation of errors in analytical measurements, the effect of measurement error on the result of an analysis, and the statistical analysis of data. [Pg.53]

Consider the situation when the accuracy of a new analytical method is evaluated by analyzing a standard reference material with a known )J,. A sample of the standard is analyzed, and the sample s mean is determined. The null hypothesis is that the sample s mean is equal to p. [Pg.84]

A certain analytical method has a relative sampling variance of 0.40% and a relative method variance of 0.070%. Evaluate the relative error (a = 0.05) if (a) you collect five samples, analyzing each twice and, (b) you collect two samples, analyzing each five times. [Pg.192]

A validation method used to evaluate the sources of random and systematic errors affecting an analytical method. [Pg.687]

A variety of statistical methods may be used to compare three or more sets of data. The most commonly used method is an analysis of variance (ANOVA). In its simplest form, a one-way ANOVA allows the importance of a single variable, such as the identity of the analyst, to be determined. The importance of this variable is evaluated by comparing its variance with the variance explained by indeterminate sources of error inherent to the analytical method. [Pg.693]

Two samples taken from a single gross sample and used to evaluate an analytical method s precision. [Pg.708]

Before sample preparation, surrogate compounds must be added to the matrix. These are used to evaluate the efficiency of recovery of sample for any analytical method. Surrogate standards are often brominated, fluorinated, or isotopically labeled compounds that are not expected to be present in environmental media. If the surrogates are detected by GC/MS within the specified range, it is... [Pg.299]

The evaluation phase of industrial hygiene is the process of making measurements on some set of samples which permits a conclusion about the degrees of hazard. Before conducting an evaluation, it is necessary to make a number of choices of what and where to sample, when to sample, how long to sample, how many samples to take, what sampling and analytical methods to use, what exposure criteria to use in the analysis of the data, and how to report the results. These choices as a whole constitute the evaluation plan. The object is to find if one or more workers have an unacceptable probabiUty of being exposed in excess of some estabUshed limit. [Pg.106]

The objective ia any analytical procedure is to determine the composition of the sample (speciation) and the amounts of different species present (quantification). Spectroscopic techniques can both identify and quantify ia a single measurement. A wide range of compounds can be detected with high specificity, even ia multicomponent mixtures. Many spectroscopic methods are noninvasive, involving no sample collection, pretreatment, or contamination (see Nondestructive evaluation). Because only optical access to the sample is needed, instmments can be remotely situated for environmental and process monitoring (see Analytical METHODS Process control). Spectroscopy provides rapid real-time results, and is easily adaptable to continuous long-term monitoring. Spectra also carry information on sample conditions such as temperature and pressure. [Pg.310]

Modem analytical techniques have been developed for complete characteri2ation and evaluation of a wide variety of sulfonic acids and sulfonates. The analytical methods for free sulfonic acids and sulfonate salts have been compiled (28). Titration is the most straightforward method of evaluating sulfonic acids produced on either a laboratory or an iadustrial scale (29,30). Spectroscopic methods for sulfonic acid analysis iaclude ultraviolet spectroscopy, iafrared spectroscopy, and and nmr spectroscopy (31). Chromatographic separation techniques, such as gc and gc/ms, are not used for free... [Pg.98]

Catalyst testing and evaluation have been revolutionized by computers, automated test reactors, and analytical methods. With modem equipment, researchers can systematically prepare and screen many catalysts in a short time and efftciendy deterrnine, not only the initial catalytic activity and selectivity, but also the stabiUty and the appearance of trace products that may indicate some new catalytic properties worthy of further development. [Pg.183]

The use of agarose as an electrophoretic method is widespread (32—35). An example of its use is in the evaluation and typing of DNA both in forensics (see Forensic chemistry) and to study heritable diseases (36). Agarose electrophoresis is combined with other analytical tools such as Southern blotting, polymerase chain reaction, and fluorescence. The advantages of agarose electrophoresis are that it requires no additives or cross-linkers for polymerization, it is not hazardous, low concentration gels are relatively sturdy, it is inexpensive, and it can be combined with many other analytical methods. [Pg.182]

Vapor-phase decomposition and collection (Figs 4.16 to 4.18) is a standardized method of silicon wafer surface analysis [4.11]. The native oxide on wafer surfaces readily reacts with isothermally distilled HF vapor and forms small droplets on the hydrophobic wafer surface at room temperature [4.66]. These small droplets can be collected with a scanning droplet. The scanned, accumulated droplets finally contain all dissolved contamination in the scanning droplet. It must be dried on a concentrated spot (diameter approximately 150 pm) and measured against the blank droplet residue of the scanning solution [4.67-4.69]. VPD-TXRF has been carefully evaluated against standardized surface analytical methods. The user is advised to use reliable reference materials [4.70-4.72]. [Pg.192]

Process Hazards Analysis (PrHA) - The application of analytical methods to identify and evaluate process hazards to determine the adequacy or control. [Pg.464]

ISO 7933 EN ii515i Thermal stress evaluation in hot cnviron-iTicnts. Analytical method Elor environments Analytical determination and interpretation of thermal stress ussny oalculatio.n of required sweat... [Pg.375]

The analytical method of jet trajectory study developed by Shepelev allows the derivation of several other useful features and is worth describing. On the schematic of a nonisothermal jet supplied at some angle to the horizon (Fig. 7.25), 5 is the jet s axis, X is the horizontal axis, and Z is the vertical axis. The ordinate of the trajectory of this jet can be described as z = xtga a- Az, where Az is the jet s rise due to buoyancy forces. To evaluate Az, the elementary volume dW with a mass equal to dm dV on the jet s trajectory was considered. The buoyancy force influencing this volume can be described as dP — g(p -Pj). Vertical acceleration of the volume under the consideration is j — dP / dm — -p,)/ g T,-T / T. Vertical... [Pg.466]

Exploitation of analytical selectivity. We have seen, in our discussion of the A —> B C series reaction (Scheme IX), that access to the concentration of A as a function of time is valuable because it permits to be easily evaluated. Modern analytical methods, particularly chromatography, constitute a powerful adjunct to kinetic investigations, and they render nearly obsolete some very difficult kinetic problems. For example, the freedom to make use of the pseudoorder technique is largely dependent upon the high sensitivity of analytical methods, which allows us to set one reactant concentration much lower than another. An interesting example of analytical control in the study of the Scheme IX system is the spectrophotometric observation of the reaction solution at an isosbestic point of species B and C, thus permitting the A to B step to be observed. [Pg.79]


See other pages where Analytical Method Evaluation is mentioned: [Pg.63]    [Pg.80]    [Pg.90]    [Pg.487]    [Pg.77]    [Pg.63]    [Pg.80]    [Pg.90]    [Pg.487]    [Pg.77]    [Pg.2903]    [Pg.77]    [Pg.228]    [Pg.150]    [Pg.174]    [Pg.668]    [Pg.770]    [Pg.771]    [Pg.416]    [Pg.108]    [Pg.238]    [Pg.419]    [Pg.282]    [Pg.24]    [Pg.90]    [Pg.346]    [Pg.12]   


SEARCH



Analytical evaluation

Analytical method evaluation ring tests

Analytical method evaluation ring tests AMERTs)

Analytical procedures method evaluation

Selection and Analytical Evaluation of Methods— With Statistical Techniques

© 2024 chempedia.info