Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Analytical high performance liquid chromatography analyses

High performance liquid chromatography—analysis of semivolatile and nonvolatile chemicals or analytes that decompose upon heating ... [Pg.217]

Wang, Y., Liu, Y., Ito, Y, Hashiguchi, T., Kitajima, I., Yamakuchi, M., Shimizu, H., Matsuo, S., Imaizumi, H., and Maruyama, I. (2001) Simultaneous measurement of anandamide and 2-arachidonoylglycerol by polymyxin b-selective adsorption and subsequent high-performance liquid chromatography analysis increase in endogenous cannabinoids in the sera of patients with endotoxic shock. Analytical Biochemistry 294 73-82. [Pg.214]

High Performance Liquid Chromatography (hpic). Hplc is currently the fastest growing analytical method and is now available in many laboratories. DL-Analysis by hplc has already been described and hplc methods have been reviewed (122). [Pg.284]

Analytical Supercritical Fluid Extraction and Chromatography Supercritical fluids, especially CO9, are used widely to extrac t a wide variety of solid and hquid matrices to obtain samples for analysis. Benefits compared with conventional Soxhlet extraction include minimization of solvent waste, faster extraction, tunabihty of solvent strength, and simple solvent removal with minimal solvent contamination in the sample. Compared with high-performance liquid chromatography, the number of theoretical stages is higher in... [Pg.2004]

High performance liquid chromatography (HPLC) has been by far the most important method for separating chlorophylls. Open column chromatography and thin layer chromatography are still used for clean-up procedures to isolate and separate carotenoids and other lipids from chlorophylls and for preparative applications, but both are losing importance for analytical purposes due to their low resolution and have been replaced by more effective techniques like solid phase, supercritical fluid extraction and counter current chromatography. The whole analysis should be as brief as possible, since each additional step is a potential source of epimers and allomers. [Pg.432]

Residue analytical methods for neonicotinoids in crops, soil and water samples have been developed. The basic principle of these methods consists of the following steps extraction of the crop and/or soil samples with acetone or the other organic solvent, cleanup by liquid-liquid partition or column chromatography, and quantitative analysis by high-performance liquid chromatography with ultraviolet detection (HPLC/UV). Simple column cleanup procedures are used to improve the accuracy and sensitivity of these methods. [Pg.1128]

The spectrum of new analytical techniques includes superior separation techniques and sophisticated detection methods. Most of the novel instruments are hyphenated, where the separation and detection elements are combined, allowing efficient use of materials sometimes available only in minute quantities. The hyphenated techniques also significantly increase the information content of the analysis. Recent developments in separation sciences are directed towards micro-analytical techniques, including capillary gas chromatography, microbore high performance liquid chromatography, and capillary electrophoresis. [Pg.386]

In addition to GC/MS, high performance liquid chromatography (HPLC/MS) has been used to analyse natural resins in ancient samples, particularly for paint varnishes containing mastic and dammar resins [34]. A partial limitation of chromatographic techniques is that they do not permit the analysis of the polymeric fraction or insoluble fraction that may be present in the native resins or formed in the course of ageing. Techniques based on the direct introduction of the sample in the mass spectrometer such as direct temperature resolved mass spectrometry (DTMS), direct exposure mass spectrometry (DE-MS) and direct inlet mass spectrometry (DI-MS), and on analytical pyrolysis (Py-GC/MS), have been employed as complementary techniques to obtain preliminary information on the... [Pg.217]

Identification and quantification of natural dyes need high performance analytical techniques, appropriate for the analysis of materials of complicated matrices containing a small amount of coloured substances. This requirement perfectly fits coupling of modern separation modules (usually high performance liquid chromatography in reversed phase mode, RPLC, but also capillary electrophoresis, CE) with selective detection units (mainly mass spectrometer). [Pg.365]

In the last decade, capillary electrophoresis (CE) has become one of the most powerful and conceptually simple separation techniques for the analysis of complex mixtures. The main reasons are its high resolution, relatively short analysis times, and low operational cost when compared to high-performance liquid chromatography (HPLC). The ability to analyze ultrasmall volume samples in the picoliter-to-nanoliter ranges makes it an ideal analytical method for extremely volume-limited biological microenvironments. [Pg.428]

Separation-based techniques, especially high-performance liquid chromatography (HPLC) and gas chromatography (GC), have long been the work horses of pharmaceutical analysis laboratories. They are among the most powerful and versatile tools for the detection and quantitation of analytes (chemical components) in complex matrices frequently encountered in the course of PhR D. [Pg.249]

As we have seen so far, libraries of hydrogenation catalysts are never composed of more than a few dozen members, up to 100 to 200 at the most. Consequently, modern analytical equipment such as gas chromatography (GC) or high-performance liquid chromatography (HPLC) equipped with an auto-sampler or even flow-through NMR systems are sufficient to handle the analysis of the entire library. Nevertheless, a few groups have initiated research towards the development of fast, sometimes parallel, analytical procedures. A few reviews have appeared on this subject [59]. Here, we will concentrate on the methods developed to analyze hydrogenation reactions, or methods that could likely be applied. [Pg.1273]

Sample preparation for analysis by hyphenated methods requires some additional planning when compared to nonhyphenated methods. All steps, extraction, concentration, and final solvent selection must take into consideration and be compatible with all the components of the hyphenated instrumentation. For gas chromatographic methods, all the components in the mixture must be in the gaseous state. For liquid chromatography (LC) or high-performance liquid chromatography (HPLC), the samples of the analytes of interest can be solids or liquids, neutral or charged molecules, or ions, but they must be in solution. If the follow-on analysis is by MS, then each of the analytes may require a different method of introduction into the MS. Metals and metal ions may be introduced by HPLC if they are in solution but commonly are introduced via AAS or inductively coupled plasma (ICP). Other analytes may be directly introduced from HPLC to MS [2],... [Pg.324]

Analytical identification of monoazo colorants and the other decomposition products requires effective (analytical) methods of concentration, which is made possible by high performance liquid chromatography (HPLC). Prior to HPLC analysis, the pigmented medium was extracted for 20 hours with toluene in a soxhlet extractor. These analytical methods also showed that above 240°C, especially after prolonged exposure of the pigmented polymer material to heat, dichlorobenzidine (DCB) is also formed. [Pg.242]


See other pages where Analytical high performance liquid chromatography analyses is mentioned: [Pg.304]    [Pg.223]    [Pg.274]    [Pg.65]    [Pg.378]    [Pg.109]    [Pg.229]    [Pg.445]    [Pg.139]    [Pg.25]    [Pg.127]    [Pg.49]    [Pg.452]    [Pg.724]    [Pg.821]    [Pg.74]    [Pg.13]    [Pg.232]    [Pg.26]    [Pg.704]    [Pg.181]    [Pg.448]    [Pg.250]    [Pg.394]    [Pg.156]    [Pg.299]    [Pg.300]    [Pg.379]    [Pg.415]    [Pg.423]    [Pg.264]    [Pg.137]    [Pg.172]    [Pg.137]    [Pg.213]   
See also in sourсe #XX -- [ Pg.145 ]




SEARCH



Analyte chromatography

Analytical Analyses

Analytical high performance liquid

Chromatography analytical

High-performance liquid chromatography analytical

Liquid analysis

Liquid chromatography analyses

© 2024 chempedia.info