Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amino digestibility

Trypsin (Section 27 10) A digestive enzyme that catalyzes the hydrolysis of proteins Trypsin selectively catalyzes the cleavage of the peptide bond between the carboxyl group of lysine or arginine and some other amino acid... [Pg.1296]

CCK is found in the digestive tract and the central and peripheral nervous systems. In the brain, CCK coexists with DA. In the peripheral nervous system, the two principal physiological actions of CCK are stimulation of gaU. bladder contraction and pancreatic enzyme secretion. CCK also stimulates glucose and amino acid transport, protein and DNA synthesis, and pancreatic hormone secretion. In the CNS, CCK induces hypothermia, analgesia, hyperglycemia, stimulation of pituitary hormone release, and a decrease in exploratory behavior. The CCK family of neuropeptides has been impHcated in anxiety and panic disorders, psychoses, satiety, and gastric acid and pancreatic enzyme secretions. [Pg.539]

The nephrotoxic amino acid, lyskioalanine [18810-04-3] formed upon alkaline treatment of proteki, was reported ki 1964 (108). Its toxicity seems to be mitigated ki proteki ki that it is not released by normal digestion (109). Naturally occurring new amino acids, which can be classified as protekiaceous or non-protekiaceous, can, as ki the case of those from some legumes, show a remarkable toxicity (110). Eor the details of amino acid toxicity, see reference 6. Enzyme inhibition by amino acids and thek derivatives have been reviewed (111). [Pg.283]

Silica. The siUca content of natural waters is usually 10 to (5 x lO " ) M. Its presence is considered undesirable for some industrial purposes because of the formation of siUca and siUcate scales. The heteropoly-blue method is used for the measurement of siUca. The sample reacts with ammonium molybdate at pH 1.2, and oxaUc acid is added to reduce any molybdophosphoric acid produced. The yellow molybdosiUcic acid is then reduced with l-amino-2-naphthol-4-sulfoiiic acid and sodium sulfite to heteropoly blue. Color, turbidity, sulfide, and large amounts of iron are possible interferences. A digestion step involving NaHCO can be used to convert any molybdate-unreactive siUca to the reactive form. SiUca can also be deterrnined by atomic... [Pg.231]

Amino-l,2,4-triazole has been prepared by evaporating formylguanidine nitrate with sodium carbonate, and from 5(3)-amino-1,2,4-triazole carboxjdic acid-3(S) by heating above its melting point, or by a long digestion with acetic acid. ... [Pg.12]

Figure 2.14 shows examples of both cases, an isolated ribbon and a p sheet. The isolated ribbon is illustrated by the structure of bovine trypsin inhibitor (Figure 2.14a), a small, very stable polypeptide of 58 amino acids that inhibits the activity of the digestive protease trypsin. The structure has been determined to 1.0 A resolution in the laboratory of Robert Huber in Munich, Germany, and the folding pathway of this protein is discussed in Chapter 6. Hairpin motifs as parts of a p sheet are exemplified by the structure of a snake venom, erabutoxin (Figure 2.14b), which binds to and inhibits... [Pg.26]

The alcoholic filtrate is evaporated to 50 cc., and 50 g. of barium hydroxide and 150 cc. of distilled water are added (Note 4). The mixture is refluxed for two hours and the excess barium hydroxide is precipitated with carbon dioxide. The barium carbonate is removed by filtration and washed with hot distilled water. A slight excess of sulfuric acid is added to the filtrate to liberate the amino acid from its barium salt, and an excess of barium carbonate is added to remove sulfate ion. The mixture is digested on the steam bath until effervescence ceases, and it is then filtered and the precipitate is washed with hot distilled water. The filtrate and washings are concentrated on the steam bath to a volume of 100 cc., decolorized with i g. of active carbon, filtered, and concentrated to the point of crystallization (about 25 cc.). The amino acid is precipitated by the addition of 150 cc. of absolute alcohol and the product is collected and washed with absolute alcohol. [Pg.5]

Phosphorus and Silicon in Waters, Effluents and Sludges [e.g. Phosphorus in Waters, Effluents and Sludges by Spectrophotometry-phosphomolybdenum blue method. Phosphorus in Waters and Acidic Digests by Spectrophotometry-phosphovanadomolybdate method. Ion Chromatographic Methods for the Determination of Phosphorus Compound, Pretreatment Methods for Phosphorus Determinations, Determination of silicon by Spectrophotometric Determination of Molybdate Reactive Silicon-1 -amino-2-naphthol-4, sulphonic acid (ANSA) or Metol reduction methods or ascorbic acid reduction method. Pretreatment Methods to Convert Other Eorms of Silicon to Soluble Molybdate Reactive Silicon, Determination of Phosphorus and Silicon Emission Spectrophotometry], 1992... [Pg.315]

Mammals, fungi, and higher plants produce a family of proteolytic enzymes known as aspartic proteases. These enzymes are active at acidic (or sometimes neutral) pH, and each possesses two aspartic acid residues at the active site. Aspartic proteases carry out a variety of functions (Table 16.3), including digestion pepsin and ehymosin), lysosomal protein degradation eathepsin D and E), and regulation of blood pressure renin is an aspartic protease involved in the production of an otensin, a hormone that stimulates smooth muscle contraction and reduces excretion of salts and fluid). The aspartic proteases display a variety of substrate specificities, but normally they are most active in the cleavage of peptide bonds between two hydrophobic amino acid residues. The preferred substrates of pepsin, for example, contain aromatic residues on both sides of the peptide bond to be cleaved. [Pg.519]

Digestion (Section 29.1) The first stage of catabolism, in which food is broken down by hydrolysis of ester, glycoside (acetal), and peptide (amide) bonds to yield fatty acids, simple sugars, and amino acids. [Pg.1240]

Protein is an important component of most foods. Nearly everything we eat contains at least a small amount of protein. Lean meats and vegetables such as peas and beans are particularly rich in protein. In our digestive system, proteins are broken down into small molecules called a-amino acids. These molecules can then be reassembled in cells to form other proteins required by the body. [Pg.621]

Animals, including humans, cannot synthesise all the different amino adds they need and thus require them in their diet. These amino adds are called the essential amino acids. Proteins in food are hydrolysed in the digestive tract and the resulting amino acids are reassembled into proteins within the animal s cells. All animals are ultimately dependent on plants for protein, as it is plants that create protein by combining inorganic nitrogen from the soil (as nitrate) with organic molecules derived from carbon from the atmosphere (as CO2). [Pg.60]

Aspartame is made from two amino acids and methanol. When it is digested, it breaks down into these three parts. Amino acids are the normal breakdown products of proteins. [Pg.78]

The serine proteases are the most extensively studied class of enzymes. These enzymes are characterized by the presence of a unique serine amino acid. Two major evolutionary families are presented in this class. The bacterial protease subtilisin and the trypsin family, which includes the enzymes trypsin, chymotrypsin, elastase as well as thrombin, plasmin, and others involved in a diverse range of cellular functions including digestion, blood clotting, hormone production, and complement activation. The trypsin family catalyzes the reaction ... [Pg.170]

Confirmation of Amino Acid Sequence Using the Analysis of LC-MS Data from an Enzyme Digest of a Protein 152... [Pg.7]

Amino Acid Sequencing of Polypeptides Generated by Enzyme Digestion Using MS-MS 166... [Pg.7]

Experimentation showed that the protein was not glycosylated and that the sequence at the iV-amino acid terminus corresponded to that expected. The C-terminus sequence, however, did not correspond to that predicted and these data were interpreted in terms of the presence of a heterogeneous, truncated, protein. A study of the tryptic digest fragments from this protein with matrix-assisted laser desorption ionization (MALDI) with post-source decay enabled the authors to suggest the positions at which the parent protein had been truncated. [Pg.199]


See other pages where Amino digestibility is mentioned: [Pg.492]    [Pg.518]    [Pg.519]    [Pg.245]    [Pg.288]    [Pg.150]    [Pg.150]    [Pg.471]    [Pg.244]    [Pg.410]    [Pg.538]    [Pg.445]    [Pg.305]    [Pg.251]    [Pg.286]    [Pg.507]    [Pg.113]    [Pg.140]    [Pg.152]    [Pg.353]    [Pg.400]    [Pg.182]    [Pg.177]    [Pg.1127]    [Pg.64]    [Pg.209]    [Pg.525]    [Pg.1029]    [Pg.1030]    [Pg.216]   
See also in sourсe #XX -- [ Pg.35 , Pg.212 ]




SEARCH



Amino acid degradation digestive enzymes

Amino acids digestibility

Amino acids digestion and

Amino acids standardised ileal digestible

Enzyme digestion amino acid sequencing

Protein Digestibility-Corrected Amino

Protein Digestibility-Corrected Amino Acid Score

Protein digestibility corrected amino acid score PDCAAS)

© 2024 chempedia.info