Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amino acids intestine

B0,+ Yes Basic amino acids Intestine (brush border) ... [Pg.691]

Amino acid Intestinal epithelia Renal tubule Exocrine pancreas Red blood cells Liver Blood-brain barrier... [Pg.129]

Biosynthesis. Somatostatin exists in longer forms in several biological tissues (95,96). One of the longer forms, which has been isolated from porcine intestine, has been characterized as a 28-amino acid peptide (97). Somatostatin is derived from a precursor containing 116 amino acids (98,99). The precursor contains one copy of the somatostatin tetradecapeptide, which is contained within the sequence of the 28-amino acid peptide at the carboxy-terminal end of the precursor. The 28-amino acid somatostatin is preceded by a single Arg residue, while somatostatin 1-14 is preceded by a pair of basic residues. [Pg.203]

CCK has been detected in two principal forms, ie, the traditional 33-amino acid peptide, and an octapeptide CCK-8. The intestine produces mainly CCK-33 (133) and the brain produces mainly CCK-8 (132). The CCK precursor contains one copy of CCK-33 (133,134) this peptide is flanked on both ends with double basic residues, whereas CCK-8 is formed from CCK-33 by cleavage of a single basic residue. [Pg.204]

Parathyroid hormone, a polypeptide of 83 amino acid residues, mol wt 9500, is produced by the parathyroid glands. Release of PTH is activated by a decrease of blood Ca " to below normal levels. PTH increases blood Ca " concentration by increasing resorption of bone, renal reabsorption of calcium, and absorption of calcium from the intestine. A cAMP mechanism is also involved in the action of PTH. Parathyroid hormone induces formation of 1-hydroxylase in the kidney, requited in formation of the active metabolite of vitamin D (see Vitamins, vitamin d). [Pg.376]

The dopamine precursor l-DOPA (levodopa) is commonly used in TH treatment of the symptoms of PD. l-DOPA can be absorbed in the intestinal tract and transported across the blood-brain barrier by the large neutral amino acid (LNAA) transport system, where it taken up by dopaminergic neurons and converted into dopamine by the activity of TH. In PD treatment, peripheral AADC can be blocked by carbidopa or benserazide to increase the amount of l-DOPA reaching the brain. Selective MAO B inhibitors like deprenyl (selegiline) have also been effectively used with l-DOPA therapy to reduce the metabolism of dopamine. Recently, potent and selective nitrocatechol-type COMT inhibitors such as entacapone and tolcapone have been shown to be clinically effective in improving the bioavailability of l-DOPA and potentiating its effectiveness in the treatment of PD. [Pg.441]

Motilin is a 22-amino acid peptide hormone, secreted by the enterochromaffin cells of the small intestine,... [Pg.792]

Substrate specificity is determined by high affinity for the cognate neurotransmitter substrate. However, low affinity uptake does also have a part in the clearance of transmitters from the interstitial space (e.g., in uptake mediated by the extraneuronal monoamine transporter, EMT) and in the intestinal absoiption of glycine and glutamate. It is obvious that there is an evolutionary relation of neurotransmitter transporters and amino acid and cation transporters in epithelia. [Pg.836]

The hormone peptide YY (PYY) is a 36 amino acid peptide, which is closely related to neuropeptide Y and pancreatic polypeptide. PYY is predominantly synthesised and released by intestinal endocrine cells, and can also coexist with glucagon in pancreatic acini and enteroglucagon in endocrine cells of the lower bowel. It acts on the same receptors as neuropeptide Y. The endogenous long C-terminal PYY fragment PYY3 36 is a biologically active and subtype-selective metabolite. [Pg.937]

Pituitary Adenylyl Cyclase-activating Polypeptide (PACAP) is a 38-amino acid peptide (PACAP-38), which is widely expressed in the central nervous system. PACAP is most abundant in the hypothalamus. It is also found in the gastrointestinal tract, the adrenal gland and in testis. Its central nervous system functions are ill-defined. In the periphery, PACAP has been shown to stimulate catecholamine secretion from the adrenal medulla and to regulate secretion from the pancreas. Three G-protein coupled receptors have been shown to respond to PACAP, PAQ (PACAP type I) specifically binds PACAP, VPACi and VPAC2 also bind vasoactive intestinal peptide (VDP). Activation of PACAP receptors results in a Gs-mediated activation of adenylyl cyclase. [Pg.979]

Serotonin or 5-hydroxytryptamine is an important biogenic amine, which is synthesized via 5-hydroxy-tryptophan from the amino acid tryptophan. The highest concentration of serotonin occurs in the wall of the intestine. About 90% of the total amount is present in enterochromaffrn cells, which are derived from the neural crest, similarly to those of the adrenal medulla. [Pg.1119]

Vasoactive Intestinal Peptide(VIP) is a 28-amino acid peptide, which has a variety of actions as a neuroendocrine hormone and a putative neurotransmitter. It... [Pg.1272]

Calcium-binding proteins, 6, 564, 572, 596 intestinal, 6, 576 structure, 6, 573 Calcium carbonate calcium deposition as, 6, 597 Calcium complexes acetylacetone, 2, 372 amides, 2,164 amino acids, 3, 33 arsine oxides, 3, 9 biology, 6, 549 bipyridyl, 3, 13 crown ethers, 3, 39 dimethylphthalate, 3, 16 enzyme stabilization, 6, 549 hydrates, 3, 7 ionophores, 3, 66 malonic acid, 2, 444 peptides, 3, 33 phosphines, 3, 9 phthalocyanines, 2,863 porphyrins, 2, 820 proteins, 2, 770 pyridine oxide, 3,9 Schiff bases, 3, 29 urea, 3, 9... [Pg.97]

In eukaryotes there is also evidence that Met(O) is actively transported. It has been reported that Met(O) is transported into purified rabbit intestinal and renal brush border membrane vesicles by a Met-dependent mechanism and accumulates inside the vesicles against a concentration gradient102. In both types of vesicles the rate of transport is increased with increasing concentrations of Na+ in the incubation medium. The effect of the Na+ is to increase the affinity of Met(O) for the carrier. Similar to that found in the bacterial system, the presence of Met and other amino acids in the incubation medium decreased the transport of Met(O). These results suggest that Met(O) is not transported by a unique carrier. [Pg.859]

The main apohpoprotein of LDL (P-lipopro-tein) is apohpoprotein B (B-lOO) and is found also in VLDL. Chylomicrons contain a truncated form of apo B (B-48) that is synthesized in the intestine, while B-lOO is synthesized in the hver. Apo B-lOO is one of the longest single polypeptide chains known, having 4536 amino acids and a molecular mass of 550,000 Da. Apo B-48 (48% of B-lOO) is formed from the same mRNA as apo B-lOO after the introduction of a stop signal by an RNA editing enzyme. Apo C-1, C-11, and C-111 are smaller polypeptides (molecular mass 7000— 9000 Da) freely transferable between several different hpoproteins. Apo E is foimd in VLDL, HDL, chylomicrons, and chylomicron remnants it accounts for 5— 10% of total VLDL apohpoproteins in normal subjects. [Pg.206]

There are two main classes of proteolytic digestive enzymes (proteases), with different specificities for the amino acids forming the peptide bond to be hydrolyzed. Endopeptidases hydrolyze peptide bonds between specific amino acids throughout the molecule. They are the first enzymes to act, yielding a larger number of smaller fragments, eg, pepsin in the gastric juice and trypsin, chymotrypsin, and elastase secreted into the small intestine by the pancreas. Exopeptidases catalyze the hydrolysis of peptide bonds, one at a time, fi"om the ends of polypeptides. Carboxypeptidases, secreted in the pancreatic juice, release amino acids from rhe free carboxyl terminal, and aminopeptidases, secreted by the intestinal mucosal cells, release amino acids from the amino terminal. Dipeptides, which are not substrates for exopeptidases, are hydrolyzed in the brush border of intestinal mucosal cells by dipeptidases. [Pg.477]

The end product of the action of endopeptidases and exopeptidases is a mixmre of free amino acids, di- and tripeptides, and oligopeptides, all of which are absorbed. Free amino acids are absorbed across the intestinal mucosa by sodium-dependent active transport. There are... [Pg.477]

Recently, Tse et al. [73] and Orlowski et al. [74] have cloned a third isoform of Na /H exchanger (named NHE-3). The inferred 832-amino acid sequence of rabbit NHE-3 is 41% identical with NHE-1, 44% identical with NHE-2, and has a similar secondary structure. In contrast to NHE-1 and NHE-2, NHE-3 is only expressed in epithelia in intestine and kidney. Moreover, administration of glucocorticoids, which stimulates transport activity of the apical Na /H" exchanger in rabbit intestine, increased levels of NHE-3 transcripts but did not affect NHE-1 or NHE-2 [75]. Taken together, these results suggest that NHE-3 may encode a resistant-type Na /H exchanger of epithelia. A fourth Na /H exchanger isoform (NHE-4) is preferentially expressed in stomach [74]. [Pg.268]

Tsuchiya W, Okada Y. 1982. Differential effects of cadmium and mercury on amino acid and sugar transport in the bullfrog small intestine. Experientia (Basel) 38 1073-1075. [Pg.186]

FIGURE 29-2. Levodopa absorption and metabolism. Levodopa is absorbed in the small intestine and is distributed into the plasma and brain compartments by an active transport mechanism. Levodopa is metabolized by dopa decarboxylase, monoamine oxidase, and catechol-O-methyltransferase. Carbidopa does not cross the blood-brain barrier. Large, neutral amino acids in food compete with levodopa for intestinal absorption (transport across gut endothelium to plasma). They also compete for transport across the brain (plasma compartment to brain compartment). Food and anticholinergics delay gastric emptying resulting in levodopa degradation in the stomach and a decreased amount of levodopa absorbed. If the interaction becomes a problem, administer levodopa 30 minutes before or 60 minutes after meals. [Pg.478]

Levodopa, a dopamine precursor, is the most effective agent for PD. Patients experience a 40% to 50% improvement in motor function. It is absorbed in the small intestine and peaks in the plasma in 30 to 120 minutes. A stomach with excess acid, food, or anticholinergic medications will delay gastric emptying time and decrease the amount of levodopa absorbed. Antacids decrease stomach acidity and improve levodopa absorption. Levodopa requires active transport by a large, neutral amino acid transporter protein from the small intestine into the plasma and from the plasma across the blood-brain barrier into the brain (Fig. 29-2). Levodopa competes with other amino acids, such as those contained in food, for this transport mechanism. Thus, in advanced disease, adjusting the timing of protein-rich meals in relationship to levodopa doses may be helpful. Levodopa also binds to iron supplements and administration of these should be spaced by at least 2 hours from the levodopa dose.1,8,16,25... [Pg.481]


See other pages where Amino acids intestine is mentioned: [Pg.150]    [Pg.155]    [Pg.476]    [Pg.200]    [Pg.375]    [Pg.305]    [Pg.153]    [Pg.27]    [Pg.219]    [Pg.111]    [Pg.268]    [Pg.1127]    [Pg.165]    [Pg.336]    [Pg.439]    [Pg.497]    [Pg.623]    [Pg.625]    [Pg.1147]    [Pg.1268]    [Pg.195]    [Pg.90]    [Pg.258]    [Pg.477]    [Pg.479]    [Pg.948]    [Pg.31]    [Pg.97]   
See also in sourсe #XX -- [ Pg.187 , Pg.188 , Pg.189 , Pg.190 , Pg.191 , Pg.192 , Pg.193 , Pg.194 , Pg.195 , Pg.196 , Pg.197 , Pg.198 , Pg.199 ]




SEARCH



© 2024 chempedia.info