Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amides oxalyl

Acylation. Acylation is the most rehable means of introducing a 3-substituent on the indole ring. Because 3-acyl substituents can be easily reduced to 3-aLkyl groups, a two-step acylation—reduction sequence is often an attractive alternative to direct 3-aLkylation. Several kinds of conditions have been employed for acylation. Very reactive acyl haUdes, such as oxalyl chloride, can effect substitution directiy without any catalyst. Normal acid chlorides are usually allowed to react with the magnesium (15) or 2inc (16) salts. The Vilsmeier-Haack conditions involving an amide and phosphoms oxychloride, in which a chloroiminium ion is the active electrophile, frequentiy give excellent yields of 3-acylindoles. [Pg.85]

Specialty Isocyanates. Acyl isocyanates, extensively used in synthetic appHcations, caimot be direcdy synthesized from amides and phosgene. Reactions of acid haUdes with cyanates have been suggested. However, the dominant commercial process utilizes the reaction of carboxamides with oxalyl chloride [79-37-8]. CycHc intermediates have been observed in these reactions which generally give a high yield of the desired products (86). [Pg.456]

A more practical solution to this problem was reported by Larson, in which the amide substrate 20 was treated with oxalyl chloride to afford a 2-chlorooxazolidine-4,5-dione 23. Reaction of this substrate with FeCL affords a reactive A-acyl iminium ion intermediate 24, which undergoes an intramolecular electrophilic aromatic substitution reaction to provide 25. Deprotection of 25 with acidic methanol affords the desired dihydroisoquinoline products 22. This strategy avoids the problematic nitrilium ion intermediate, and provides generally good yields of 3-aryl dihydroisoquinolines. [Pg.379]

Many procedures for the formation of carboxylic acid amides are known in the literature. The most widely practiced method employs carboxylic acid chlorides as the electrophiles which react with the amine in the presence of an acid scavenger. Despite its wide scope, this protocol suffers from several drawbacks. Most notable are the limited stability of many acid chlorides and the need for hazardous reagents for their preparation (thionyl chloride, oxalyl chloride, phosgene etc.) which release corrosive and volatile by-products. Moreover, almost any other functional group in either reaction partner needs to be protected to ensure chemoselective amide formation.2 The procedure outlined above presents a convenient and catalytic alternative to this standard protocol. [Pg.137]

The solid-phase synthesis of the 2(lff)-pyrazinone scaffold is based on a Strecker reaction of commercially available Wang amide linker with appropriate aldehyde and tetramethylsilyl (TMS) cyanide, followed by cyclization of a-aminonitrile with oxalyl chloride resulting in the resin linked pyrazinones. This approach allows a wide diversity at the C-6-position of pyrazinone scaffold (Scheme 35, Table 1). As it has been shown for the solution phase, the sensitive imidoyl chloride moiety can easily undergo an addition/elimination reaction with in situ-generated sodium methoxide affording the resin-linked... [Pg.292]

When the substrate is oxalyl chloride (ClCOCOCl) and the reagent an unsubstituted amide, an acyl isocyanate (RCONCO) is formed. The normal product (RCONH-COCOCl) does not form, or if it does, it rapidly loses CO and HC1. ° ... [Pg.515]

Reaction between oxalyl chloride and unsubstituted amides... [Pg.1677]

N-Silylated peptide esters are acylated by the acid chloride of N-Cbo-glycine to N-acylated peptide bonds [11]. Likewise, acid chlorides, prepared by treatment of carboxylic acids with oxalyl chloride, react with HMDS 2 at 24°C in CH2CI2 to give Me3SiCl 14 and primary amides in 50-92% yield [12]. Free amino acids such as L-phenylalanine or /5-alanine are silylated by Me2SiCl2 48 in pyridine to 0,N-protected and activated cyclic intermediates, which are not isolated but reacted in situ with three equivalents of benzylamine to give, after 16 h and subsequent chro-... [Pg.44]

The traditional method for transforming carboxylic acids into reactive acylating agents capable of converting alcohols to esters or amines to amides is by formation of the acyl chloride. Molecules devoid of acid-sensitive functional groups can be converted to acyl chlorides with thionyl chloride or phosphorus pentachloride. When milder conditions are necessary, the reaction of the acid or its sodium salt with oxalyl chloride provides the acyl chloride. When a salt is used, the reaction solution remains essentially neutral. [Pg.243]

A modified literature procedure [10] provided a long-term high yield manufacturing process to the oxadiazole fragment, as depicted in Scheme 6.11. Amidation of tetrazole 40 with ethyl oxalyl chloride (41) afforded intermediate 42 which was... [Pg.175]

Interaction of the two compounds led to the evolution of a toxic gas thought to be chlorine [1], It is the far more poisonous phosgene, arising from the known base-catalysed disproportionation of the carbonate to oxalyl chloride and phosgene, which occurs even at ambient temperature [2], (The editor knows that amides, too, catalyse this rearrangement and suspects that Lewis acids will also)... [Pg.384]

Chlorination of amide or lactam using oxalyl chloride gives the chloro-iminium salts in situ. They react with tetrathiomolybdate to afford the corresponding thioamides and thiolactams in short-time and at low temperature in high yields. This method affords high yields of secondary or tertiary thioamides on the other hand it gives low yield of primary thioamide (17% yield) (Scheme 12).3 3... [Pg.151]

The carboxylic functionalities inserted onto the tubes can be used as platforms to obtain further transformations (Fig. 3.5). A commonly utilized route is the reaction of carboxylic groups with thionyl chloride or oxalyl chloride to prepare the corresponding acyl chlorides, which are useful intermediates for amidation or esterification reactions. Amides can also be prepared directly from the acids by means of standard solution chemistry conditions, using carbodiimide derivatives in the presence of the selected amine. [Pg.48]

There are several chemical reactions that can be used as an alternative to achieve covalent functionalization of CNTs. Two of them are amidation and/or esterification reactions. Both reactions take advantage of the carboxylic groups sitting on the side-walls and tips of CNTs. In particular, they are converted to acyl chloride groups (-C0-C1) via a reaction with thionyl (SO) or oxalyl chloride before adding an alcohol or an amine. This procedure is very versatile and allows the functionalization of CNTs with different entities such as biomolecules [154-156], polymers [157], and organic compounds [158,159] among others. [Pg.82]

Eaton and co-workers also reported the synthesis of 1,3,5-trinitrocubane and 1,3,5,7-tetranitrocubane (39) ° The required tri- and tetra-substituted cubane precursors were initially prepared via stepwise substitution of the cubane core using amide functionality to permit ort/jo-lithiation of adjacent positions. The synthesis of precursors like cubane-1,3,5,7-tetracarboxylic acid was long and inefficient by this method and required the synthesis of toxic organomercury intermediates. Bashir-Hashemi reported an ingenious route to cubane-1,3,5,7-tetracarboxylic acid chloride (35) involving photochemical chlorocarbonylation of cubane carboxylic acid chloride (34) with a mercury lamp and excess oxalyl chloride. Under optimum conditions this reaction is reported to give a 70 8 22 isomeric mixture of 35 36 37... [Pg.72]

Photosensitized decomposition of oxime oxalyl amides proceeded via carbamoyl radicals which underwent A-exo cyclizations forming four-membered /3-lactams as main products. Irradiation of solution of oxime derivative 22 and 4-methoxyacetophenone (MAP) in toluene at 100 °C with a 400 W UV lamp led to azetidinone 23 in 3 1 ratio of diastereoisomers (equation 10) . ... [Pg.237]

Two years later, the same group reported a formal synthesis of ellipticine (228) using 6-benzyl-6H-pyrido[4,3-f>]carbazole-5,ll-quinone (6-benzylellipticine quinone) (1241) as intermediate (716). The optimized conditions, reaction of 1.2 equivalents of 3-bromo-4-lithiopyridine (1238) with M-benzylindole-2,3-dicarboxylic anhydride (852) at —96°C, led regioselectively to the 2-acylindole-3-carboxylic acid 1233 in 42% yield. Compound 1233 was converted to the corresponding amide 1239 by treatment with oxalyl chloride, followed by diethylamine. The ketone 1239 was reduced to the corresponding alcohol 1240 by reaction with sodium borohydride. Reaction of the alcohol 1240 with f-butyllithium led to the desired 6-benzylellipticine quinone (1241), along with a debrominated alcohol 1242, in 40% and 19% yield, respectively. 6-Benzylellipticine quinone (1241) was transformed to 6-benzylellipticine (1243) in 38% yield by treatment with methyllithium, then hydroiodic acid, followed... [Pg.327]

Another useful method for introducing formyl and acyl groups is the Vilsmeier-Haack reaction.61 An Ac. V-di alkyl amide reacts with phosphorus oxychloride or oxalyl chloride62 to give a chloroiminium ion, which is the reactive electrophile. [Pg.711]

Antibacterial activity is retained when the relatively complex amide side chains are replaced by a simple heterocycle amidine. The required reagent (7-2) is prepared by reaction of azepine formamide (7-1) with oxalyl chloride. Condensation of the product with 6-APA (2-4) leads to the formation of the amidine and thus amdinocillin (7-3) [11]. [Pg.549]

With both pyr-T and 4-HO-pyr-T, there are two additional ring analogies that are natural companions to 5-MeO-pyr-T. These are the piperidine and the morpholine counterparts, 5-MeO-mor-T and 5-MeO-pip-T. Both compounds are in the literature, and an entry reference to them can be gotten from the "known tryptamines" appendix. Along with the pyrrolidine material I had made a reasonable supply of the amides for these other two, both by way of the 5-methoxyindole and oxalyl chloride procedure given above. With piperidine, there is 5-... [Pg.216]

There is the raw stuff potentially available to answer this question. There are a couple of compounds known with the sulfur in the 4-position, which is the location of the oxygen atom in psilocybin. The 4-thio analogues have been synthesized from 4-methylthio-indole, via the oxalyl chloride method and reaction with the appropriate amine. With dimethylamine, the indoleglyoxylamide was made in a 43% yield and had a mp 163-164 °C. With diisopropylamine, the amide was made in a 27% yield and had a mp 190-192 °C. The final amines were prepared by the reduction of these amides with LAH in THF. N,N-Dimethyl-4-thiotryptamine (4-MeS-DMT) was obtained in a 68% yield and melted at 108-110 °C N,N-diisopropyl-4-methylthiotryptamine (4-MeS-DIPT) was obtained in a 61% yield and melted at 92-94 °C. In animal studies of behavioral disruption with these three compounds, there was systematic drop of potency in going from the 5-MeS-DMT to 4-MeS-DMT to 4-MeS-DIPT. [Pg.229]


See other pages where Amides oxalyl is mentioned: [Pg.143]    [Pg.267]    [Pg.70]    [Pg.46]    [Pg.905]    [Pg.1261]    [Pg.115]    [Pg.718]    [Pg.81]    [Pg.342]    [Pg.130]    [Pg.142]    [Pg.328]    [Pg.100]    [Pg.416]    [Pg.29]    [Pg.848]    [Pg.1095]    [Pg.1257]    [Pg.830]    [Pg.266]    [Pg.16]    [Pg.72]    [Pg.153]    [Pg.397]    [Pg.403]    [Pg.155]   
See also in sourсe #XX -- [ Pg.602 ]




SEARCH



Oxalyl

© 2024 chempedia.info