Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tetra-substitution

A phase change takes place when one enantiomer is converted to its optical isomer. As illustrated in Figure 9, when the chiral center is a tetra-substituted carbon atom, the conversion of one enantiomer to the other is equivalent to the exchange of two electron pairs. This transformation is therefore phase inverting. [Pg.346]

Figure 9. The phase-inverting transformation of chiral system with a tetra-substituted carbon atom. Figure 9. The phase-inverting transformation of chiral system with a tetra-substituted carbon atom.
Pyrazolone dyes are particularly versatile yellow chromophores the yellow dye developer used in Polacolor, the first instant color film, was based on a pyrazolone dye. The stmctures of the three Polacolor dyes are shown in Figure 3. The study of azo dyes derived from 4-substituted 1-naphthols led to the chromophore used in the Polacolor magenta dye developer. The Polacolor cyan dye developer contained a 1,4,5,8-tetra-substituted anthraquinone as chromophore (20). [Pg.487]

The strength of electron-donor groups iacrease ia the order OH < NH < NHR < HNAr. Tetra-substituted anthraquiaones (1,4,5,8-) are more bathochromic than di- (1,4") 01 trisubstituted (1,2,4-) anthraquiaones. Thus, by an appropriate selection of donor groups and substitution patterns, a wide variety of colors can be achieved (see Dyes, anthraquinone). [Pg.278]

This model prediets that tri-substituted and tetra-substituted olefins would also be poor substrates. Thus it was not until 1994 that a study in the epoxidation of higher substituted olefins appeared. Indeed Jaeobsen revealed that tri-substituted olefins, and even tetra-substituted olefins ean be excellent substratesA new model was put forth that encompasses a skewed side-on approach of tri-substituted olefins to the Mn-oxo eomplex. The observation that certain tetrasubstituted olefins undergo epoxidation with good enantioseleetivity suggests that further studies are needed in order to fully understand the transition state geometry of the catalyst and substrate. [Pg.37]

In 1909, Patemo and Chieffi noted that mixtures of tri- or tetra-substituted olefins and aldehydes formed trimethylene oxides when exposed to sunlight. Biichi later repeated Patemo s experiments by irradiating 2-methyI-2-butene in the presence of benzaldehyde, butyraldehyde, or aeetophenone and rigorously purifying and identifying the resulting products. The reaction thus bears the name of its two primary pioneers and has come to represent any photo-catalyzed [2 + 2] electrocyclization of a carbonyl and an alkene. [Pg.44]

The infrared spectra of twelve di-, tri-, and tetra-substituted quin-oxalines have also been reported " ... [Pg.244]

The Best results are obtained with cA-alkenes however, the epoxidation of tri-and tetra-substituted double bonds is also possible. Because of its versatility, the Jacobsen-Katsuki epoxidation is an important method in asymmetric synthesis. [Pg.256]

On treatment with trimethyl(2-propenyl)silane and titanium(IV) chloride, chiral methyl fi-formylcarboxylates give di- and tetra-substituted y-lactones with moderate to good stereoselectivity. Participation of seven-membered ring chelates was suggested65. [Pg.350]

Alkylallenes are obtained by the reaction of 1-ethynylcycloalkanol acetates with organocopper reagents, lithium dimethyl- and dibutylcuprates643 (see Section B.l). Even in the case of the presence of a substituent at the acetylenic terminus, SN2 displacement takes place, giving tetra-substituted allenes. Reaction of the steroidal 17-acetoxy-17-ethynyl derivative la shows that the... [Pg.884]

Acetylene- and Diacetylene-Expanded Cycloalkanes and Rotanes. 201 1 -42 de Meijere A, Kozhushkov SI, Khlebnikov AF (2000) Bicyclopropylidene - A Unique Tetra-substituted Alkene and a Versatile Cj-Building Block. 207 89-147 de Meijere A, Kozhushkov SI, Hadjiaraoglou LP (2000) Alkyl 2-Chloro-2-cyclopropylidene-acetates - Remarkably Versatile Building Blocks for Organic Synthesis. 207 149-227 Dennig J (2003) Gene Transfer in Eukaryotic Cells Using Activated Dendrimers. 228 227-236 de Raadt A, Fechter MH (2001) Miscellaneous. 215 327-345 Desreux JF, see Jacques V (2002) 221 123-164... [Pg.260]

Intermolecular hydroalkoxylation of 1,1- and 1,3-di-substituted, tri-substituted and tetra-substituted allenes with a range of primary and secondary alcohols, methanol, phenol and propionic acid was catalysed by the system [AuCl(IPr)]/ AgOTf (1 1, 5 mol% each component) at room temperature in toluene, giving excellent conversions to the allylic ethers. Hydroalkoxylation of monosubstituted or trisubstituted allenes led to the selective addition of the alcohol to the less hindered allene terminus and the formation of allylic ethers. A plausible mechanism involves the reaction of the in situ formed cationic (IPr)Au" with the substituted allene to form the tt-allenyl complex 105, which after nucleophilic attack of the alcohol gives the o-alkenyl complex 106, which, in turn, is converted to the product by protonolysis and concomitant regeneration of the cationic active species (IPr)-Au" (Scheme 2.18) [86]. [Pg.46]

The first cross metathesis to form a tetra-substituted olefin was achieved recently [146]. Howell and co-workers used lactams as substrates for CM with mono- and di-substituted olefins. The authors suggest that the limitations of the method are primarily due to steric reasons. Varying the electron density of the lactam showed no great influence on the reactivity while steric influences like a-branched allylic crosspartners or a methyl-group in the C4-position of the lactam both led to no reaction (Scheme 3.13). [Pg.92]

Scheme 3.13 CM to form tetra-substituted olefins (Boc = tert-butyloxycarbonyl)... Scheme 3.13 CM to form tetra-substituted olefins (Boc = tert-butyloxycarbonyl)...
The use of rhodium catalysts for the synthesis of a-amino acids by asymmetric hydrogenation of V-acyl dehydro amino acids, frequently in combination with the use of a biocatalyst to upgrade the enantioselectivity and cleave the acyl group which acts as a secondary binding site for the catalyst, has been well-documented. While DuPhos and BPE derived catalysts are suitable for a broad array of dehydroamino acid substrates, a particular challenge posed by a hydrogenation approach to 3,3-diphenylalanine is that the olefin substrate is tetra-substituted and therefore would be expected to have a much lower activity compared to substrates which have been previously examined. [Pg.73]

The pioneering work of Denney et ai19 on the synthetic utility of oxyphosphoranes has been thoroughly exploited by Evans et al. in demonstrating that diethoxytriphenylphosphorane promotes mild and efficient cyclodehydration of diols (e.g. 11) to cyclic ethers (e.g. 13) via the cyclic phosphorane (12)20>21. Simple 1,2-, 1,4-, and 1,5- diols afford good yields of the cyclic ethers but 1,3-propanediol and 1,6-hexandiol give mainly 3-ethoxy-l-pro-panol and 6-ethoxy-l-hexanol respectively whereas tri- and tetra-substituted 1,2-diols afford the relatively stable 1,3,2- diox-phospholanes. In some instances (e.g. 14), ketones (e.g. 16) are formed by a synchronous 1,2-hydride shift within (15). The synthetic utility has been extended to diethoxyphosphoranes supported on a polystyrene backbone22. [Pg.58]

In 1956 Brown, in a series of patents(68-75), disclosed that clays could be treated with di-, tri-, or tetra-substituted ammonia derivatives. Later, McLaughlin, et al.(76,77), introduced cationic polymers as permanent clay protective chemicals. A series of published results describing laboratory and field applications soon became available(78-81). Structural details of the cationic polymers appeared in patents(82-85). In general the polymers are polyamine derivatives, mostly quaternary in nature. Theng(86,87) has discussed how the multiple cationic centers in these polymers can interact and permanently protect clays. Callaway(88) et al. has noted that cationic polymers may interfere with the performance of crosslinked fracturing fluids. [Pg.72]


See other pages where Tetra-substitution is mentioned: [Pg.255]    [Pg.234]    [Pg.242]    [Pg.286]    [Pg.178]    [Pg.326]    [Pg.339]    [Pg.234]    [Pg.72]    [Pg.20]    [Pg.350]    [Pg.29]    [Pg.37]    [Pg.38]    [Pg.46]    [Pg.335]    [Pg.183]    [Pg.37]    [Pg.274]    [Pg.232]    [Pg.173]    [Pg.135]    [Pg.200]    [Pg.256]    [Pg.197]    [Pg.308]    [Pg.431]    [Pg.217]    [Pg.219]    [Pg.151]    [Pg.216]    [Pg.677]   
See also in sourсe #XX -- [ Pg.14 ]




SEARCH



© 2024 chempedia.info