Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Simple Heterocycles

Most reactions of oxadiazolinones (62) involve nucleophilic attack at the carbonyl group. This is typically followed by opening of the ring, often with subsequent rccyclization to a different heterocycle. Simple nucleophilic displacement occurred on conversion of oxadiazolinone (62a R = R) into chloro-oxadiazole (63) on treatment with a mixture of phosphorus oxychloride and phosphorus pentachloride <84JIC436) or with thionyl chloride <90AP(323)595>. [Pg.278]

There are many special methods to making heterocycles if you want to read about them, see Tedder, part 3, pp.115-131 and 205-220, or Norman, Chapter 18, p.5SS. We are more interested in applying these general methods to molecules in which a heterocyclic ring is only part of the problem. How would you make TM 263 from simple starting materials ... [Pg.83]

This case history presents only a simple account of one of R.B. Woodward s adventures based on ingenious undentanding of structural features and experimental findings described in the literature. The hydrogenation of porphyrins is still one of the most active subjects in heterocyclic natural products chemistry, and the interested reader may find some modem developments in the publications of A. Eschenmoser (C.Angst, 1980 J.E. Johansen, 1980). [Pg.259]

In the second, which belongs to a systematic study of the transmission of substituent effects in heterocyclic systems, Noyce and Forsyth (384-386) showed that for thiazole, as for other simple heterocyclic systems, the rate of solvolysis of substituted hetero-arylethyl chlorides in 80% ethanol could be correlated with a constants of the substituent X only when there is mutual conjugation between X and the reaction center. In the case of thiazole this situation corresponds to l-(2-X-5-thiazolyl)ethyl chlorides (262) and l-(5-X-2-thiazolyl)ethyl chlorides (263). [Pg.148]

The effect of alkyl groups in the 5-position on the reactivity of the thiazole nitrogen is analogous to that found for 3-alkylpyridines, in other words, a simple inductive effect. In passing from the unsubstituted heterocycle to the methyl derivative, the rate constant doubles a further increase in substitution produces a much less pronounced variation. [Pg.390]

The spectroscopic properties of the /V-nitrosamines, especially the nmr and mass spectra, vary widely depending on the substituents on the amine nitrogen (44—47). The nmr spectra are affected by the E—Z isomerism around the N—N partial double bond and by the axial—equatorial geometry resulting from conformational isomerism in the heterocycles (44,45). Some general spectral characteristics for typical dialkylnitrosamines and simple heterocycHc nitrosamines are given in Table 1. [Pg.107]

N -Heterocyclic Sulfanilamides. The parent sulfanilamide is manufactured by the reaction of A/-acetylsulfanilyl chloride with excess concentrated aqueous ammonia, and hydrolysis of the product. Most heterocycHc amines are less reactive, and the condensation with the sulfonyl chloride is usually done in anhydrous media in the presence of an acid-binding agent. Use of anhydrous conditions avoids hydrolytic destmction of the sulfonyl chloride. The solvent and acid-binding functions are commonly filled by pyridine, or by mixtures of pyridine and acetone. Tertiary amines, such as triethylamine, may be substituted for pyridine. The majority of A/ -heterocycHc sulfanilamides are made by simple condensation with A/-acetylsulfanilyl chloride and hydrolysis. [Pg.468]

Reaction with vatious nucleophilic reagents provides several types of dyes. Those with simple chromophores include the hernicyanine iodide [16384-23-9] (20) in which one of the terminal nitrogens is nonheterocyclic enamine triearbocyanine iodide [16384-24-0] (21) useful as a laser dye and the merocyanine [32634-47-2] (22). More complex polynuclear dyes from reagents with more than one reactive site include the trinuclear BAB (Basic-Acidic-Basic) dye [66037-42-1] (23) containing basic-acidic-basic heterocycles. Indolizinium quaternary salts (24), derived from reaction of diphenylcyclopropenone [886-38-4] and 4-picoline [108-89-4] provide trimethine dyes such as (25), which absorb near 950 nm in the infrared (23). [Pg.395]

Table 2 H Chemical Shifts of Protons on the Heterocyclic Rings of Simple Benzazines cf. naphthalene, column 1)... Table 2 H Chemical Shifts of Protons on the Heterocyclic Rings of Simple Benzazines cf. naphthalene, column 1)...
The phleomycin, bleomycin and related families are widespectrum antibiotics containing the pyrimidine (987) in addition, they have antineoplastic activity and bleomycin is already in clinical use for certain tumours. They were isolated about 1956 from Streptomyces verticillus, and in addition to the pyrimidine portion the molecules contain an amide part (R ) and a complicated part (R ) consisting of polypeptide, an imidazole, two sugars, a bithiazole and a polybasic side chain which can vary widely phleomycin and bleomycin differ by only one double bond in the bithiazole section (78MI21303). The activity of such antibiotics is increased by the addition of simple heterocycles (including inter alia pyrimidines and fused pyrimidines) and other amplifiers (82MI21300). [Pg.147]

When activating substituents are present in the benzenoid ring, substitution usually becomes more facile and occurs in accordance with predictions based on simple valence bond theory. When activating substituents are present in the heterocyclic ring the situation varies depending upon reaction conditions thus, nitration of 2(177)-quinoxalinone in acetic acid yields 7-nitro-2(177)-quinoxalinone (21) whereas nitration with mixed acid yields the 6-nitro derivative (22). The difference in products probably reflects a difference in the species being nitrated neutral 2(177)-quinoxalinone in acetic acid and the diprotonated species (23) in mixed acids. [Pg.163]

No simple electrophilic substitution, for example nitrosation, nitration, sulfonation or halogenation of a C—H bond, has so far been recorded in the pteridine series. The strong 7T-electron deficiency of this nitrogen heterocycle opposes such electrophilic attack, which would require a high-energy transition state of low stability. [Pg.286]

The effect of substituents on the reactivity of heterocyclic nuclei is broadly similar to that on benzene. Thus mem-directing groups such as methoxycarbonyl and nitro are deactivating. The effects of strongly activating groups such as amino and hydroxy are difficult to assess since simple amino compounds are unstable and hydroxy compounds exist in an alternative tautomeric form. Comparison of the rates of formylation and trifiuoroacetylation of the parent heterocycle and its 2-methyl derivative indicate the following order of sensitivity to substituent effects furan > tellurophene > selenophene = thiophene... [Pg.44]

Other solvents can be divided into several classes. In hydrogen bond-breaking solvents (dipolar aprotics), the simple amino, hydroxy and mercapto heterocycles all dissolve. In the hydrophobic solvents, hydrogen bonding substituents greatly decrease the solubility. Ethanol and other alcohols take up a position intermediate between water and the hydro-phobic solvents (63PMH 1)177). [Pg.32]

IR and Raman studies of heterocycles today cover two different fields. For simple and symmetrical molecules very elaborate experiments (argon matrices, isotopic labelling) and complex calculations lead to the complete assignment of the fundamentals, tones and harmonics. However, the description of modes ought to be only approximate, since in a molecule like pyrazole there are no pure ones. This means that it is not correct to write that the band at 878 cm is y(CH), and the only correct assertion is that the y(CH) mode contributes to the band. On the other hand, IR spectroscopy is used as an analytical tool for identifying structures, and in this case, bands are assigned to r-iCO) or 5(NH) on the basis of a simple Nujol mull spectrum and conventional tables. Both atttitudes, almost antagonistic to each other, are discussed in this section. [Pg.199]

A theoretical, comparative study of the tautomerism of 56 five-membered heterocyclic rings announced in (76AHC(Sl)l) has appeared (81MI40402). The stabilities of the three forms for 5-pyrazolones, 5-pyrazolethiones and 5-aminopyrazoles have been calculated by a simple Hiickel o) iterative method. The relative energies and the substituent and solvent effects are in agreement with the experimental results. [Pg.215]

Polymers with a backbone of five-membered heterocyclic rings have been developed in the new area of thermally stable materials during the last 10 years (B-80MI40408). The simple polypyrazole (741) is prepared by condensation of polydiethynylbenzene with hydrazine in pyridine with yields of 60-97%. [Pg.300]

The 1-azirine ring also undergoes a number of reactions in which the heterocycle plays the role of the nucleophile. Although the basicity of the nitrogen atom in the azirine ring is much lower than in simple aliphatic amines, this system can still function as a nucleophilic reagent. One example of this involves the acid-catalyzed hydrolysis of 1-azirines to a-aminoketones (200) which represents a well-established reaction. In fact, in many reactions of 1-azirines where acid catalysis is used, formation of a-aminoketones is difficult to avoid (67JA44S6). [Pg.69]

Whereas oxaziridine and diaziridine were partial subjects of comprehensive theoretical studies on cyclic compounds (73MI50800), diazirine and some of its simple derivatives were the special target of quantum chemical investigations. Since diazirine, the lowest molecular weight heterocycle, has only five atoms and is of high symmetry, there was a chance for ab initio calculations, which followed some semiempirical studies. [Pg.197]

Before proceeding to a description of specific practices, it is appropriate to remark that if the rules with their variances, alternatives and exceptions seem excessively numerous and complicated, it is because heterocyclic compounds are even more numerous and complicated. Systematic names can be kept short only at the expense of a substantial number of rules and variances when rules are kept few and simple, relatively cumbersome names are likely to be generated. Current practice, and the principles behind it, represents a balance between these two poles. [Pg.9]

It is common for names of simple heterocyclic carbonyl derivatives to be contracted, with loss of the -ine ending of the parent name, e.g. pyridone, quinolone, acridone, pyrrolidone, thiazolidone. [Pg.45]


See other pages where Simple Heterocycles is mentioned: [Pg.14]    [Pg.22]    [Pg.68]    [Pg.14]    [Pg.14]    [Pg.113]    [Pg.14]    [Pg.22]    [Pg.68]    [Pg.14]    [Pg.14]    [Pg.113]    [Pg.148]    [Pg.211]    [Pg.66]    [Pg.389]    [Pg.13]    [Pg.18]    [Pg.19]    [Pg.21]    [Pg.286]    [Pg.36]    [Pg.36]    [Pg.41]    [Pg.57]    [Pg.7]    [Pg.6]    [Pg.47]    [Pg.48]    [Pg.86]    [Pg.96]    [Pg.271]    [Pg.278]    [Pg.5]    [Pg.8]    [Pg.27]   
See also in sourсe #XX -- [ Pg.41 ]

See also in sourсe #XX -- [ Pg.41 ]




SEARCH



© 2024 chempedia.info