Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aluminum containers manufacture

The CAS registry Hsts 5,037 aluminum-containing compounds exclusive of alloys and intermetaUics. Some of these are Hsted in Table 1. Except for nepheline and alunite in the USSR and Poland, bauxite is the raw material for all manufactured aluminum compounds. The term bauxite is used for ores that contain economically recoverable quantities of the aluminum hydroxide mineral gibbsite or the oxide—hydroxide forms boehmite and diaspore. [Pg.131]

Sodium aluminate is used in water purification, in the paper industry, for the after treatment of Ti02 pigment, and in the manufacture of aluminum containing catalysts and zeoHte. Worldwide markets are in the range of 125,000 t/yr (19). [Pg.137]

AFCMA Aluminum Foil Container Manufacturer s Assoc. [Pg.648]

The adhesive or sealant should be mixed and furnished for application in clean containers. The containers should be small enough that no adhesives or sealant will be left beyond the time when the resin becomes unusable due to its working life. Disposable waterproof cardboard cups or aluminum containers work very well. Containers may be marked to show the hour at which the contents were mixed. Any unused adhesive should then be collected at the end of the working life period recommended by the manufacturer. [Pg.403]

Sodium aluminate (theoretical formula NaA102) has a certain industrial importance not only as an intermediate in the digestion of bauxite in the Bayer process (see Section 3.2.4.2). USA production of sodium aluminate in 1993 was estimated to be 85 10- t/a. Sodium aluminate is produced by dissolving hydrated aluminum oxide in 50% sodium hydroxide. It is utilized in water purification, in the paper industry, for the post-treatment of Ti02-pigments, for the manufacture of aluminum-containing... [Pg.254]

AFCMA Aluminum Foil Container Manufactur- ANFI Association of Nonwoven Fibers In-... [Pg.586]

Ethers are typically packaged under dry nitrogen to exclude water and oxygen, two substances that facilitate peroxide formation. Peroxide formation is also initiated by ultraviolet light As a consequence, ethers are bottled in either metal (tin or aluminum) or amber glass containers. Manufacturers often add stabilizers (a.k.a., preservatives) to the peroxide-forming ethers. [Pg.32]

Your company manufactures specialty filters sketched below. The filter consists of an aluminum container packed with threads of polymer Q, The threads are coated with an active ingredient, chemical Z. The threads are approximately 1 mm diameter and 10 cm long and are wadded into entangled balls, which prevents the loss of any threads as fluid passes through the filter. The filters are produced by tamping a thread ball into an aluminum container open at one end, and then crimping the cap over the open end. [Pg.42]

In parallel with the development of homegrown polarizers, we have also started considering functions of semitransparent films by using reflections from the reverse side of the polarizer. In a joint development with an aluminum foil manufacturer, we developed reflecting films. Semitransparent films were produced by using our core expertise of adhesive tapes by coating polarizers with solutions that contain uniformly dispersed metals or metal oxides [3]. [Pg.85]

Containers. Aerosol containers, made to withstand a certain amount of pressure, vary in both size and materials of constmction. They are manufactured from tin-plated steel, aluminum, and glass. The most popular aerosol container is the three-piece tin-plated steel container. Glass containers, which are usually plastic coated, generally have thicker walls than conventional glass jars. They are limited to a maximum size of 120 mL and are used for pharmaceutical and cosmetic aerosols. [Pg.349]

Military. The single-component explosives most commonly used for military compositions are TNT, RDX or HMX, nitrocellulose, and nitroglycerin. The last two are used almost exclusively to make propellants. The production volume of TNT far exceeds that of any other explosive. It is used as manufactured, as a base of biaary slurries with other high melting explosives, or ia ternary systems generally containing a biaary mix and aluminum. [Pg.19]

Relatively smaller amounts of very high purity A1F. are used ia ultra low loss optical fiber—duotide glass compositions, the most common of which is ZBLAN containing tirconium, barium, lanthanum, aluminum, and sodium (see Fiber optics). High purity A1F. is also used ia the manufacture of aluminum siUcate fiber and ia ceramics for electrical resistors (see Ceramics AS electrical materials Refractory fibers). [Pg.141]

Significant amounts of cryoHte are also recovered from waste material ia the manufacture of aluminum. The carbon lining of the electrolysis ceUs, which may contain 10—30% by weight of cryoHte, is extracted with sodium hydroxide or sodium carbonate solution and the cryoHte precipitated with carbon dioxide (28). Gases from operating ceUs containing HF, CO2, and fluorine-containing dusts may be used for the carbonation (29). [Pg.144]

In one manufacturing process, aluminum chloride is treated with a solution containing sodium carbonate and sodium bicarbonate. The product of this reaction is mixed with the precipitate obtained by reaction of a solution of aluminum chloride and ammonia. The mixed magma is dialyzed, the product mixed with glycerol (qv), sodium benzoate is added, and the mixture is then passed through a coUoid mill. [Pg.199]

Isopropylnaphthalenes can be prepared readily by the catalytic alkylation of naphthalene with propjiene. 2-lsopropylnaphthalene [2027-17-0] is an important intermediate used in the manufacture of 2-naphthol (see Naphthalenederivatives). The alkylation of naphthalene with propjiene, preferably in an inert solvent at 40—100°C with an aluminum chloride, hydrogen fluoride, or boron trifluoride—phosphoric acid catalyst, gives 90—95% wt % 2-isopropylnaphthalene however, a considerable amount of polyalkylate also is produced. Preferably, the propylation of naphthalene is carried out in the vapor phase in a continuous manner, over a phosphoric acid on kieselguhr catalyst under pressure at ca 220—250°C. The alkylate, which is low in di- and polyisopropylnaphthalenes, then is isomerized by recycling over the same catalyst at 240°C or by using aluminum chloride catalyst at 80°C. After distillation, a product containing >90 wt % 2-isopropylnaphthalene is obtained (47). [Pg.487]

Chromium Oxide-Based Catalysts. Chromium oxide-based catalysts were originally developed by Phillips Petroleum Company for the manufacture of HDPE resins subsequendy, they have been modified for ethylene—a-olefin copolymerisation reactions (10). These catalysts use a mixed sihca—titania support containing from 2 to 20 wt % of Ti. After the deposition of chromium species onto the support, the catalyst is first oxidised by an oxygen—air mixture and then reduced at increased temperatures with carbon monoxide. The catalyst systems used for ethylene copolymerisation consist of sohd catalysts and co-catalysts, ie, triaLkylboron or trialkyl aluminum compounds. Ethylene—a-olefin copolymers produced with these catalysts have very broad molecular weight distributions, characterised by M.Jin the 12—35 and MER in the 80—200 range. [Pg.399]

Dicyclopentadiene is also polymerized with tungsten-based catalysts. Because the polymerization reaction produces heavily cross-Unked resins, the polymers are manufactured in a reaction injection mol ding (RIM) process, in which all catalyst components and resin modifiers are slurried in two batches of the monomer. The first batch contains the catalyst (a mixture of WCl and WOCl, nonylphenol, acetylacetone, additives, and fillers the second batch contains the co-catalyst (a combination of an alkyl aluminum compound and a Lewis base such as ether), antioxidants, and elastomeric fillers (qv) for better moldabihty (50). Mixing two Uquids in a mold results in a rapid polymerization reaction. Its rate is controlled by the ratio between the co-catalyst and the Lewis base. Depending on the catalyst composition, solidification time of the reaction mixture can vary from two seconds to an hour. Similar catalyst systems are used for polymerization of norbomene and for norbomene copolymerization with ethyhdenenorbomene. [Pg.431]

Available Forms. Phthalocyanines are available as powders, in paste, or Hquid forms. They can be dispersed in various media suitable for aqueous, nonaqueous, or multipurpose systems, eg, polyethylene, polyamide, or nitrocellulose. Inert materials like clay, barium sulfate, calcium carbonates, or aluminum hydrate are the most common soHd extenders. Predispersed concentrates of the pigments, like flushes, are interesting for manufacturers of paints and inks (156), who do not own grinding or dispersing equipment. Pigment—water pastes, ie, presscakes, containing 50—75% weight of water, are also available. [Pg.506]

At high temperatures, aluminum reduces many oxygen-containing compounds, particularly metal oxides. These reactions, of the type shown in equation 6, are used in the manufacture of certain metals and alloys, as well as in the thermite welding process. ... [Pg.94]


See other pages where Aluminum containers manufacture is mentioned: [Pg.17]    [Pg.165]    [Pg.156]    [Pg.475]    [Pg.2274]    [Pg.129]    [Pg.314]    [Pg.421]    [Pg.202]    [Pg.203]    [Pg.1294]    [Pg.673]    [Pg.221]    [Pg.243]    [Pg.450]    [Pg.179]    [Pg.328]    [Pg.504]    [Pg.225]    [Pg.298]    [Pg.10]    [Pg.367]    [Pg.397]    [Pg.75]    [Pg.27]    [Pg.105]    [Pg.148]   


SEARCH



Aluminum containers

Aluminum manufacture

Aluminum manufacturing

© 2024 chempedia.info