Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkyl halides reduction potentials

Cobaloxime(I) generated by the electrochemical reductions of cobaloxime(III), the most simple model of vitamin Bi2, has been shown to catalyze radical cyclization of bromoacetals.307 Cobalt(I) species electrogenerated from [ConTPP] also catalyze the reductive cleavage of alkyl halides. This catalyst is much less stable than vitamin Bi2 derivatives.296 It has, however, been applied in the carboxylation of benzyl chloride and butyl halides with C02.308 Heterogeneous catalysis of organohalides reduction has also been studied at cobalt porphyrin-film modified electrodes,275,3 9-311 which have potential application in the electrochemical sensing of pollutants. [Pg.489]

Chemiluminescence also occurs during electrolysis of mixtures of DPACI2 99 and rubrene or perylene In the case of rubrene the chemiluminescence matches the fluorescence of the latter at the reduction potential of rubrene radical anion formation ( — 1.4 V) at —1.9 V, the reduction potential of DPA radical anion, a mixed emission is observed consisting of rubrene and DPA fluorescence. Similar results were obtained with the dibromide 100 and DPA and/or rubrene. An energy-transfer mechanism from excited DPA to rubrene could not be detected under the reaction conditions (see also 154>). There seems to be no explanation yet as to why, in mixtures of halides like DPACI2 and aromatic hydrocarbons, electrogenerated chemiluminescence always stems from that hydrocarbon which is most easily reduced. A great number of aryl and alkyl halides is reported to exhibit this type of rather efficient chemiluminescence 155>. [Pg.122]

TPP)Rh(L)J+C1 in the presence of an alkyl halide leads to a given (P)Rh(R) or (P)Rh(RX) complex. The yield was nearly quantitative (>80X) in most cases based on the rhodium porphyrin starting species. However, it should be noted that excess alkyl halide was used in Equation 3 in order to suppress the competing dimerization reaction shown in Equation 1. The ultimate (P)Rh(R) products generated by electrosynthesis were also characterized by H l MR, which demonstrated the formation of only one porphyrin product(lA). No reaction is observed between (P)Rh and aryl halides but this is expected from chemical reactivity studles(10,15). Table I also presents electronic absorption spectra and the reduction and oxidation potentials of the electrogenerated (P)Rh(R) complexes. [Pg.456]

Typically, the reactions are carried out using a controlled potential, with the potential set to a value that allows the selective reduction of Co(III) in the presence of the alkyl halide and Michael acceptor [26]. Only 1-20 mol % of the cobalt mediator is needed. The reactions are conducted in a medium in which lithium perchlorate... [Pg.322]

Bond constructions similar to those just discussed can be achieved using an alkylidene malonate which is tethered to an alkyl bromide [72]. Of particular interest in this context is the controlled potential reductive cyclization of 263. As illustrated, the method provides a reasonably facile and modestly efficient entry to cyclobutanes 264. Presumably, the process is initiated by reduction of the alkylidene malonate rather than the alkyl halide, since alkyl bromides are more difficult to reduce. The same substrate, when reduced with L-Selectride undergoes conjugate addition of hydride and a subsequent cyclization leading to the five-membered ring 265. The latter transformation constitutes an example of a MIRC reaction [71-73], a process which is clearly complementary to the... [Pg.37]

Reduction of alkyl and benzyl halides proceeds in two one-electron addition steps. The first detectable product is the alkyl or benzyl radical and this is reduced further to the carbanion. Some alkyl iodides show two polarographic waves corresponding to the two steps. Alkyl bromides show only one two-electron wave and alkyl chlorides are not reducible in the available potential window. Benzyl halides also show only one wave and benzyl chlorides are reducible in the available potential range. Reduction potentials measured in dimethylformamide are collected in... [Pg.98]

Reduction potentials for alkyl and benzyl halides measured by cyclic voltammetry at 0.1 or 0.2 V s" with a glassy carbon electrode in dimethylformamide. [Pg.99]

Tlte reduction potential for an alkyl or benzyl radical, relative to that of the carbon-halogen bond from which it is derived, is important in determining the isolated products. Products are derived either by radical or by carbanion chemistry. The half-wave potential for the second polarographic wave of alkyl halides is connected with reduction of the radical. Sophisticated methods have been devised for deducing radical reduction potentials in cases where (his second wave is not seen. Values are collected in Table 4.4. [Pg.99]

Scheme 4.10. Calalyttc cycle for the reduction of alkyl halides by cobalamins. The outer circle represents the combined photo and electrochemical process, "fhe inner shunt is the wholly electrochemical process at more negative potentials. Ligands are omitted for clarity. Scheme 4.10. Calalyttc cycle for the reduction of alkyl halides by cobalamins. The outer circle represents the combined photo and electrochemical process, "fhe inner shunt is the wholly electrochemical process at more negative potentials. Ligands are omitted for clarity.
A simple diagram depicting the differences between these two complementary theories is shown in Fig. 1, which represents reactions at zero driving force. Thus, the activation energy corresponds to the intrinsic barrier. Marcus theory assumes a harmonic potential for reactants and products and, in its simplest form, assumes that the reactant and product surfaces have the same curvature (Fig. la). In his derivation of the dissociative ET theory, Saveant assumed that the reactants should be described by a Morse potential and that the products should simply be the dissociative part of this potential (Fig. Ib). Some concerns about the latter condition have been raised. " On the other hand, comparison of experimental data pertaining to alkyl halides and peroxides (Section 3) with equations (7) and (8) seems to indicate that the simple model proposed by Saveant for the nuclear factor of the ET rate constant expression satisfactorily describes concerted dissociative reductions in the condensed phase. A similar treatment was used by Wentworth and coworkers to describe dissociative electron attachment to aromatic and alkyl halides in the gas phase. ... [Pg.87]

As mentioned earlier, the reductive power of an anion radical can be increased considerably by photoexcitation in the visible part of the spectrum. This type of reaction has been demonstrated in the case of the photo-assisted reductive cleavage of alkyl halides in presence of anthraquinone as mediator Further work is necessary to evaluate the scope of this potentially important process. [Pg.49]

Totten, L. A., and A. L. Roberts, Calculated one- and two-electron reduction potentials and related molecular descriptors for reduction of alkyl and vinyl halides in water , Crit. Rev. Environ. Sci. Technol, 31,175-221 (2001). [Pg.1249]

The redox pair formed from oxidizing the zero-valent iron has a reduction potential of -0.440 V therefore, zero-valent iron can reduce hydrogen ions, carbonate, sulfate, nitrate, and oxygen, in addition to alkyl halides (Matheson and Tratnyek, 1994). Both Equation (13.2) and Equation (13.3) cause the pH... [Pg.506]

The reduction potentials for various alkyl halides range from +0.5 to +1.5 V therefore, when Fe° serves as an electron donor, the reaction is thermodynamically favorable. Because three reductants are present in the treatment system (Fe°, H2, and Fe2+), three possible pathways exist. Equation (13.9) represents the oxidation of Fe° by reduction of a halogenated compound. In the second pathway, the ferrous iron behaves as a reductant, as represented in Equation (13.10). This reaction is relatively slow because the ability to reduce a pollutant by ferrous iron is dependent on the speciation ferrous ions, which is determined by the ligands present in the system. The third possible pathway, Equation (13.11), is dehalogenation by hydrogen. This reaction does not occur easily without a catalyst. In addition, if hydrogen levels become too high, corrosion is inhibited (Matheson and Tratnyek, 1994) ... [Pg.513]

Electrochemical studies are usually performed with compounds which are reactive at potentials within the potential window of the chosen medium i.e. a system is selected so that the compound can be reduced at potentials where the electrolyte, solvent and electrode are inert. The reactions described here are distinctive in that they occur at very negative potentials at the limit of the cathodic potential window . We have focused here on preparative reductions at mercury cathodes in media containing tetraalkylammonium (TAA+) electrolytes. Using these conditions the cathodic reduction of functional groups which are electroinactive within the accessible potential window has been achieved and several simple, but selective organic syntheses were performed. Quite a number of functional groups are reduced at this limit of the cathodic potential window . They include a variety of benzenoid aromatic compounds, heteroaromatics, alkynes, 1,3-dienes, certain alkyl halides, and aliphatic ketones. It seems likely that the list will be increased to include examples of other aliphatic functional groups. [Pg.98]

There is one method of direct alkylation of a nitrogen nucleophile. Preliminary FGI (with reduction in mind again) to an alkyl azide 52 allows C-N disconnection to the alkyl halide and azide ion 54. This interesting species is linear and can slip into crowded molecules like a tiny dart. But there is a drawback all azides are toxic and POTENTIALLY EXPLOSIVE. [Pg.56]

Alkyl- and Aryl-Halides. Because the halo-groups of organic molecules have large electronegativities and electron affinities, all halo-carbon molecules are electrophilic. Their electrochemical reduction potential is a measure of their electrophilicity (and electron affinity), which is illustrated in Figure 12.1 for hexacWorobenzene (C6C16), 1,2,3,4-tetrachlorobenzene (1,2,3,4-C6H2C14), and n-butyl iodide (n-BuI).8,9 Table 12.1 summarizes the reduction potentials for several alkyl-halides and ary 1-chlorides.810... [Pg.444]

TABLE 13.7 Reduction Potentials for Alkyl Halides (RX) in Dimethylformamide"... [Pg.484]

The metal-centered reduction of iron and cobalt porphyrins [(por)Afn] yields metalloporphyrin anions [Eq. (13.13)]. The reduction potential for this reaction is 13, and is equivalent to the N- value for the oxidation of the metal-centered nucleophile [(por)uM-]. The one-electron reduction of alkyl halides yields the... [Pg.489]

Oxidation-reduction (redox) reactions, along with hydrolysis and acid-base reactions, account for the vast majority of chemical reactions that occur in aquatic environmental systems. Factors that affect redox kinetics include environmental redox conditions, ionic strength, pH-value, temperature, speciation, and sorption (Tratnyek and Macalady, 2000). Sediment and particulate matter in water bodies may influence greatly the efficacy of abiotic transformations by altering the truly dissolved (i.e., non-sorbed) fraction of the compounds — the only fraction available for reactions (Weber and Wolfe, 1987). Among the possible abiotic transformation pathways, hydrolysis has received the most attention, though only some compound classes are potentially hydrolyzable (e.g., alkyl halides, amides, amines, carbamates, esters, epoxides, and nitriles [Harris, 1990 Peijnenburg, 1991]). Current efforts to incorporate reaction kinetics and pathways for reductive transformations into environmental exposure models are due to the fact that many of them result in reaction products that may be of more concern than the parent compounds (Tratnyek et al., 2003). [Pg.324]


See other pages where Alkyl halides reduction potentials is mentioned: [Pg.8]    [Pg.427]    [Pg.489]    [Pg.10]    [Pg.13]    [Pg.242]    [Pg.544]    [Pg.29]    [Pg.55]    [Pg.62]    [Pg.64]    [Pg.113]    [Pg.14]    [Pg.101]    [Pg.248]    [Pg.36]    [Pg.726]    [Pg.65]    [Pg.983]    [Pg.79]    [Pg.124]    [Pg.132]    [Pg.482]    [Pg.488]    [Pg.490]    [Pg.353]    [Pg.867]    [Pg.1048]    [Pg.1051]    [Pg.1052]   
See also in sourсe #XX -- [ Pg.985 ]

See also in sourсe #XX -- [ Pg.8 ]

See also in sourсe #XX -- [ Pg.8 ]




SEARCH



Alkyl halides reduction potentials, 269, Table

Alkyl reduction

Halides reduction

Halides, alkyl reduction

Reduction alkylation

Reduction reductive alkylation

Reductive alkylation

© 2024 chempedia.info