Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aliphatic compounds Aromatic

Other Syntheses.—As in the case of the aliphatic compounds, aromatic hydrocarbons are formed when salts of acids are distilled with sodium hydroxide or soda-lime. Benzene can be prepared from benzoic acid in this way —... [Pg.405]

Chemical Classification This method of classification uses the chemical structure, nature, and composition that a substance possesses. Examples of chemical classifications include aliphatic compounds, aromatics, acids, alcohols, ketones, esters, and ethers. [Pg.112]

Aliphatic compounds, aromatic compounds, benzene ring, delocalized electrons... [Pg.658]

SchifT s bases A -Arylimides, Ar-N = CR2, prepared by reaction of aromatic amines with aliphatic or aromatic aldehydes and ketones. They are crystalline, weakly basic compounds which give hydrochlorides in non-aqueous solvents. With dilute aqueous acids the parent amine and carbonyl compounds are regenerated. Reduction with sodium and alcohol gives... [Pg.353]

It should be noted that aliphatic compounds (except the paraffins) are usually oxidised by concentrated nitric acid, whereas aromatic compounds (including the hydrocarbons) are usually nitrated by the concentrated acid (in the presence of sulphuric acid) and oxidised by the dilute acid. As an example of the latter, benzaldehyde, CjHsCHO, when treated with concentrated nitric acid gives ffi-nitrobenzaldehyde, N02CgH4CH0, but with dilute nitric acid gives benzoic acid, CgHgCOOH. [Pg.112]

Both aliphatic and aromatic nitro-compounds can be readily reduced in acid solution to the corresponding primary amine. Thus when a mixture of nitrobenzene and tin is treated with hydrochloric acid, the tin dissolves to give stannous chloride, SnCh, which in these circumstances then reacts with more acid to give stannic chloride, SnCl, and the nascent hydrogen produced from... [Pg.161]

The iodine atom in iodobenzene (unlike that in the corresponding aliphatic compounds) is very resistant to the action of alkalis, potassium cyanide, silver nitrite, etc. This firm attachment of the iodine atom to the benzene ring is typical of aromatic halides generally, although in suitably substituted nitio-compounds, such as chloro-2,4-dinitrobenzene, the halogen atom does possess an increased reactivity (p. 262). [Pg.185]

Acyl halides, both aliphatic and aromatic, react with the sodium derivative, but the product depends largely on the solvent used. Thus acetyl chloride reacts with the sodium derivative (E) suspended in ether to give mainly the C-derivative (t) and in pyridine solution to give chiefly the O-derivative (2). These isomeric compounds can be readily distinguished, because the C-derivative (1) can still by enolisation act as a weak acid and is therefore... [Pg.270]

Unlike aliphatic hydrocarbons, aromatic hydrocarbons can be sul-phonated and nitrated they also form characteristic molecular compounds with picric acid, styphnic acid and 1 3 5-trinitrobenzene. Many of the reactions of aromatic hydrocarbons will be evident from the following discussion of crystalline derivatives suitable for their characterisation. [Pg.518]

Formic acid is a good reducing agent in the presence of Pd on carbon as a catalyst. Aromatic nitro compounds are reduced to aniline with formic acid[100]. Selective reduction of one nitro group in 2,4-dinitrotoluene (112) with triethylammonium formate is possible[101]. o-Nitroacetophenone (113) is first reduced to o-aminoacetophenone, then to o-ethylaniline when an excess of formate is used[102]. Ammonium and potassium formate are also used for the reduction of aliphatic and aromatic nitro compounds. Pd on carbon is a good catalyst[103,104]. NaBH4 is also used for the Pd-catalyzed reduction of nitro compounds 105]. However, the ,/)-unsaturated nitroalkene 114 is partially reduced to the oxime 115 with ammonium formate[106]... [Pg.541]

Compound 132 condensed with 1 or 2 moles of aliphatic or aromatic a-haloketones in acetonic or alcoholic solution yielded either the corresponding 2-thiazolythiourea (133) (559, 753, 797) or sym-substituted bis(2-thiazolyl)amine (134) (Scheme 64 and Table 11-19) (430, 553, 653). [Pg.244]

The reactivity of alkylthiazoles possessing a functional group linked to the side-chain is discussed here neither in detail nor exhaustively since it is analogous to that of classical aliphatic and aromatic compounds. These reactions are essentially of a synthetic nature. In fact, the cyclization methods discussed in Chapter II lead to thiazoles possessing functional groups on the alkyl chain if the aliphatic compounds to be cyclized, carrying the substituent on what will become the alkyl side chain, are available. If this is not the case, another functional substituent can be introduced on the side-chain by cyclization and can then be converted to the desired substituent by a classical reaction. [Pg.340]

ACYLATION OF ALIPHATIC COMPOUNDS Similar to alkylation, not only aromatic but also aliphatic and cycloaliphatic compounds undergo Friedel-Crafts acylation reactions. [Pg.561]

Two substituents on two N atoms increase the number of diaziridine structures as compared with oxaziridines, while some limitations as to the nature of substituents on N and C decrease it. Favored starting materials are formaldehyde, aliphatic aldehydes and ketones, together with ammonia and simple aliphatic amines. Aromatic amines do not react. Suitable aminating agents are chloramine, N-chloroalkylamines, hydroxylamine-O-sulfonic acid and their simple alkyl derivatives, but also oxaziridines unsubstituted at nitrogen. Combination of a carbonyl compound, an amine and an aminating agent leads to the standard procedures of diaziridine synthesis. [Pg.230]

Low surface energy substrates, such as polyethylene or polypropylene, are generally difficult to bond with adhesives. However, cyanoacrylate-based adhesives can be effectively utilized to bond polyolefins with the use of the proper primer/activa-tor on the surface. Primer materials include tertiary aliphatic and aromatic amines, trialkyl ammonium carboxylate salts, tetraalkyl ammonium salts, phosphines, and organometallic compounds, which are initiators for alkyl cyanoacrylate polymerization [33-36]. The primer is applied as a dilute solution to the polyolefin surface, solvent is allowed to evaporate, and the specimens are assembled with a small amount of the adhesive. With the use of primers, adhesive strength can be so strong that substrate failure occurs during the course of the shear tests, as shown in Fig. 11. [Pg.862]

The fluorination of organometallics with Al-fluoroamide reagents has received Only limited attention. Grignard reagents, both aliphatic and aromatic, are converted to organofluonne compounds. Both the electron transfer and the Sf,j2 ntechamsms have been considered in these processes [SO, 81, 82], The reactions 0 exemplified in equation 46 [48, 69, 70, 71, 75] Organosilanes are also fluonnated [71] (equation 47)... [Pg.157]

Catalytic reduction of fluormated aliphatic and aromatic nitro compounds to give oximes and amines was described previously, as was the use of dissolving metals to prepare amines [Si] Refmement of these techniques has resulted in optimized yields and, as indicated in equations 69 and 70, in selective reductions [S6, 87]... [Pg.313]

Polyfluorinated a-diketones react with 1,2-diainino compounds, such as ortlio-phenylenediamine, to give 2,3-substituted quinoxalmes [103] Furthermore, the carboxyl function of trifluoropyruvates offers an additional electrophilic center. Cyclic products are obtained with binucleophiles [13, 104] With aliphatic or aromatic 1,2-diamines, six-memhered heterocycles are formed Anilines and phenols undergo C-alkylation with trifluoropyruvates in the ortho position followed by ring closure to form y-lactams and y-lactones [11, 13, 52, 53, 54] (equation 23). [Pg.851]

The halogen in the aromatic nucleus is much more firmlj fixed than in the case of the aliphatic compounds, eg-, bronio-benzene is quite unaffected by most of the reagents which. act... [Pg.272]

Nitrosodimethylaniline.—It is a peculiarity of the tertiary aromatic amines, which distinguish them fiom the corresponding aliphatic compounds, that they arc capable of reacting with nitrous acid. Here the nitroso-group replaces hydrogen in the para-position to the dimethylamino-group. [Pg.280]

Cinnamic Acid.—The reaction, which takes place when an aldehyde (aliphatic or aromatic) acts on the sodium salt of an aliphatic acid in presence of the anhychide, is known as Perkin s reaction, and has a ery wide application. Accoid-ing to the result of Fittig s researches on the properties of the unsaturated acids described below, the reaction occurs in two steps. The aldeh) de forms first an additive compound with the acid, the aldehyde caibon attaching itself to the n-carbon ii.e.i nevt the carbovyl) of the acid. A saturated hydiOKy-acid is formed, which is stable, if the a-carbon is attached to only one atom of hydrogen, as in the case of isobutync acid,... [Pg.304]

Acetophenone.—The Fnedel-Crafts reaction, of which this pieparation is a type, consists in the use of anhydious aluminium chlonde for effecting combination between an aromatic hydrocarbon or its deiivative on the one hand, and a halogen i,Cl 01 Bi) compound on the othei. The leaction 13 always accompanied by the evolution of hydiochloiic or hydio-bromic acid, and the product is a compound with AlCl-j, which decomposes and yields the new substance on the addition of watei. This reaction has been utilised, as in the present case, (r) for the prepaiation of ketones, in which an acid chloiide (aliphatic or aromatic) is employed,... [Pg.309]

Taft began the LFER attack on steric effects as part of his separation of electronic and steric effects in aliphatic compounds, which is discussed in Section 7.3. For our present purposes we abstract from that treatment the portion relevant to aromatic substrates. Hammett p values for alkaline ester hydrolysis are in the range +2.2 to +2.8, whereas for acid ester hydrolysis p is close to zero (see Table 7-2). Taft, therefore, concluded that electronic effects of substituents are much greater in the alkaline than in the acid series and. in fact, that they are negligible in the acid series. This left the steric effect alone controlling relative reactivity in the acid series. A steric substituent constant was defined [by analogy with the definition of cr in Eq. (7-22)] by Eq. (7-43), where k is the rate constant for acid-catalyzed hydrolysis of an orr/to-substituted benzoate ester and k is the corresponding rate constant for the on/to-methyl ester note that CH3, not H, is the reference substituent. ... [Pg.335]

In addition to the applications indicated on p. 858. hypohalous acids are useful halogenating agents for Ixjth aromatic and aliphatic compounds. HOBr and HOI are usually generated in silii. The ease of aromatic halogenation increa.ses in the sequence OCl < OBr < Ol and is facilitated by salts of Pb or Ag. Another well-known reaction of hypohalites is their cleavage of methyl ketones to form carboxylates and haloform ... [Pg.860]

Compound 40 has not yet been synthesized. However, there is a large body of synthetic data for nucleophilic substitution reactions with derivatives of 41 [synthesized from aliphatic and aromatic aldehydes, pyridine, and trimethylsilyl triflate (92S577)]. All of these experimental results reveal that the exclusive preference of pathway b is the most important feature of 41 (and also presumably of 40). [Pg.198]

A large amount of fuel and environmentally based analysis is focused on the determination of aliphatic and aromatic content. These types of species are often notoriously difficult to deconvolute by mass spectrometric means, and resolution at the isomeric level is almost only possible by using chromatographic methods. Similarly, the areas of organohalogen and flavours/fragrance analysis are dominated by a need to often quantify chiral compounds, which in the same way as aliphatic... [Pg.57]

With comprehensive GC, we can now choose a rational set of columns that should be able to tune the separation. If we accept that each column has an approximate isovolatility property at the time when solutes are transferred from one column to the other, then separation on the second column will largely arise due to the selective phase interactions. We need only then select a second column that is able to resolve the compound classes of interest, such as a phase that separates aromatic from aliphatic compounds. If it can also separate normal and isoalkanes from cyclic alkanes, then we should be able to achieve second-dimension resolution of all major classes of compounds in petroleum samples. A useful column set is a low polarity 5 % phenyl polysiloxane first column, coupled to a higher phenyl-substituted polysiloxane, such as a 50 % phenyl-type phase. The latter column has the ability to selectively retain aromatic components. [Pg.96]

An antipolymerization agent such as hydroquinone may be added to the reaction mixture to inhibit the polymerization of the maleate or fumarate compound under the reaction conditions. This reaction is preferably carried out at a temperature within the range of 20°C to 150°C. This reaction is preferably carried out at atmospheric pressure. Reaction time of 16 to 24 hours have bean specified for this reaction by J.T. Cassaday. The reaction is preferably carried out in a solvent such as the low molecular weight aliphatic monohydric alcohols, ketones, aliphatic esters, aromatic hydrocarbons or trialkyl phosphates. [Pg.894]


See other pages where Aliphatic compounds Aromatic is mentioned: [Pg.129]    [Pg.1531]    [Pg.1498]    [Pg.49]    [Pg.51]    [Pg.257]    [Pg.297]    [Pg.129]    [Pg.1531]    [Pg.1498]    [Pg.49]    [Pg.51]    [Pg.257]    [Pg.297]    [Pg.320]    [Pg.108]    [Pg.155]    [Pg.1193]    [Pg.136]    [Pg.29]    [Pg.236]    [Pg.820]    [Pg.3]    [Pg.418]    [Pg.58]   


SEARCH



Aliphatic compounds

Aliphatics compounds

Aliphatic—aromatic

© 2024 chempedia.info