Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldehydes 3+2 cycloaddition reactions

Because ketones are generally less reactive than aldehydes, cycloaddition reaction of ketones should be expected to be more difficult to achieve. This is well reflected in the few reported catalytic enantioselective cycloaddition reactions of ketones compared with the many successful examples on the enantioselective reaction of aldehydes. Before our investigations of catalytic enantioselective cycloaddition reactions of activated ketones [43] there was probably only one example reported of such a reaction by Jankowski et al. using the menthoxyaluminum catalyst 34 and the chiral lanthanide catalyst 16, where the highest enantiomeric excess of the cycloaddition product 33 was 15% for the reaction of ketomalonate 32 with 1-methoxy-l,3-butadiene 5e catalyzed by 34, as outlined in Scheme 4.26 [16]. [Pg.174]

On the other hand, hikosamine (284), obtained by degradation of hikizimy-cin (285), was synthesized by the recently developed diene-aldehyde cycloaddition reaction (85JA7762). Hexoaldose 278 was synthesized starting with the Eu(fod)3 (83JA3716) mediated cyclocondensation of furfural (275) with diene... [Pg.284]

Yamamoto and co-workers have introduced a conceptually interesting series of catalysts that incorporate an acidic proton into the active catalyst. Termed Bronsted acid-assisted chiral Lewis acid (BLA), catalyst 14 selectively catalyzes a number of diene-aldehyde cycloadditions reactions (Scheme 16) [67]. While extremely selective for the substrates shown, no aldehydes lacking an a-substitu-ent were reported to be effective in this reaction. This feature was addressed in... [Pg.1129]

E)-Chalcones 4 were prepared via Claisen-Schmidt condensation of methyl ketones with different aromatic aldehydes. Cycloaddition reaction of 4 with thiourea yielded the eorresponding thioxypyrimidine 5 derivatives. Compounds 5 were condensed with chloroacetic acid to yield thiazolopyrimidine 6. Also thione 5 were also condensed, in one pot reaction, with chloroacetic acid and aromatic aldehyde to yield arylmethylene derivatives 7 which could also be prepared directly by condensation of 5 with aromatic aldehydes (Scheme 2) [14-20]. [Pg.319]

There has been unremitting interest in the development of various reaction systems initiated by Al(III) complexes based on sterically encumbered dianionic ligands bearing various Lewis base moieties at properly designed positions. In this area, a series of optically active Al(III) triamine complexes, such as complex 88 (Fig. 29), have been reported as Lewis acid catalysts for the mediation of various asymmetric transformations, including ketene-aldehyde cycloaddition reactions (Eq. 16 for more detail on these transformations, see Chapter 6 Reactions triggered by Lewis acidic organoaluminum species ) [225, 226]. [Pg.35]

More recently, Karadedian and Kerr have applied the successful cyclopropane/aldehyde cycloaddition reaction in the asymmetric synthesis of (+)-isatisine A starting from the homochiral (5)-vinylcyclopropane diester [40a,b], A close examination of isatisine A revealed that the stereochemistry between and of the tetrahydroftiran could be achieved through a cycloaddition reaction starting from the S cyclopropane. [Pg.256]

Simple olefins do not usually add well to ketenes except to ketoketenes and halogenated ketenes. Mild Lewis acids as well as bases often increase the rate of the cyclo addition. The cycloaddition of ketenes to acetylenes yields cyclobutenones. The cycloaddition of ketenes to aldehydes and ketones yields oxetanones. The reaction can also be base-cataly2ed if the reactant contains electron-poor carbonyl bonds. Optically active bases lead to chiral lactones (41—43). The dimerization of the ketene itself is the main competing reaction. This process precludes the parent compound ketene from many [2 + 2] cyclo additions. Intramolecular cycloaddition reactions of ketenes are known and have been reviewed (7). [Pg.474]

In 1959 Carboni and Lindsay first reported the cycloaddition reaction between 1,2,4,5-tetrazines and alkynes or alkenes (59JA4342) and this reaction type has become a useful synthetic approach to pyridazines. In general, the reaction proceeds between 1,2,4,5-tetrazines with strongly electrophilic substituents at positions 3 and 6 (alkoxycarbonyl, carboxamido, trifluoromethyl, aryl, heteroaryl, etc.) and a variety of alkenes and alkynes, enol ethers, ketene acetals, enol esters, enamines (78HC(33)1073) or even with aldehydes and ketones (79JOC629). With alkenes 1,4-dihydropyridazines (172) are first formed, which in most cases are not isolated but are oxidized further to pyridazines (173). These are obtained directly from alkynes which are, however, less reactive in these cycloaddition reactions. In general, the overall reaction which is presented in Scheme 96 is strongly... [Pg.50]

A-Substituted pyrroles, furans and dialkylthiophenes undergo photosensitized [2 + 2] cycloaddition reactions with carbonyl compounds to give oxetanes. This is illustrated by the addition of furan and benzophenone to give the oxetane (138). The photochemical reaction of pyrroles with aliphatic aldehydes and ketones results in the regiospecific formation of 3-(l-hydroxyalkyl)pyrroles (e.g. 139). The intermediate oxetane undergoes rearrangement under the reaction conditions (79JOC2949). [Pg.67]

A substituted a,/3-unsaturated aldehyde, cinnamaldehyde, has been observed to undergo the same type of two-step 1,3-cycloaddition reaction with a cyclohexanone enamine as acrolein does, forming in this case a stereo-isomeric mixture of substituted bicycloaminoketones in excellent yield (29a,31a,31b). [Pg.218]

Silylketenes in formation of (3-lactones and (3-lactams 98JCS(P1)2105. Syntheses of (3-lactams, (3-lactones, and 1,3- and 1,4-diazetidinediones by pho-tochemically induced cycloaddition reactions of chromium carbene complexes with imines, aldehydes, and azo compounds 97T4105. [Pg.245]

The [ 2 + 4]-cycloaddition reaction of aldehydes and ketones with 1,3-dienes is a well-established synthetic procedure for the preparation of dihydropyrans which are attractive substrates for the synthesis of carbohydrates and other natural products [2]. Carbonyl compounds are usually of limited reactivity in cycloaddition reactions with dienes, because only electron-deficient carbonyl groups, as in glyoxy-lates, chloral, ketomalonate, 1,2,3-triketones, and related compounds, react with dienes which have electron-donating groups. The use of Lewis acids as catalysts for cycloaddition reactions of carbonyl compounds has, however, led to a new era for this class of reactions in synthetic organic chemistry. In particular, the application of chiral Lewis acid catalysts has provided new opportunities for enantioselec-tive cycloadditions of carbonyl compounds. [Pg.156]

Yamamoto et al. were probably the first to report that chiral aluminum(III) catalysts are effective in the cycloaddition reactions of aldehydes [11]. The use of chiral BINOL-AlMe complexes (R)-S was found to be highly effective in the cycloaddition reaction of a variety of aldehydes with activated Danishefsky-type dienes. The reaction of benzaldehyde la with Danishefsky s diene 2a and traws-l-methoxy-2-methyl-3-(trimethylsilyloxy)-l,3-pentadiene 2b affords cis dihydropyrones, cis-3, as the major product in high yield with up to 97% ee (Scheme 4.6). The choice of the bulky triarylsilyl moiety in catalyst (J )-8b is crucial for high yield and the en-antioselectivity of the reaction in contrast with this the catalysts derived from AlMe3 and (J )-3,3 -disubstituted binaphthol (substituent = H, Me, Ph) were effective in stoichiometric amounts only and were less satisfactory with regard to reactivity and enantioselectivity. [Pg.156]

A series of chiral binaphthyl ligands in combination with AlMe3 has been used for the cycloaddition reaction of enamide aldehydes with Danishefsky s diene for the enantioselective synthesis of a chiral amino dihydroxy molecule [15]. The cycloaddition reaction, which was found to proceed via a Mukaiyama aldol condensation followed by a cyclization, gives the cycloaddition product in up to 60% yield and 78% ee. [Pg.159]

Chiral boron(III) Lewis acid catalysts have also been used for enantioselective cycloaddition reactions of carbonyl compounds [17]. The chiral acyloxylborane catalysts 9a-9d, which are also efficient catalysts for asymmetric Diels-Alder reactions [17, 18], can also catalyze highly enantioselective cycloaddition reactions of aldehydes with activated dienes. The arylboron catalysts 9b-9c which are air- and moisture-stable have been shown by Yamamoto et al. to induce excellent chiral induction in the cycloaddition reaction between, e.g., benzaldehyde and Danishefsky s dienes such as 2b with up to 95% yield and 97% ee of the cycloaddition product CIS-3b (Scheme 4.9) [17]. [Pg.159]

Different chiral transition- and lanthanide-metal complexes can catalyze the cycloaddition reaction of unactivated and activated aldehydes with especially activated... [Pg.160]

Keck et al. reported that a catalyst generated from (S)- or (l )-BINOL 12 and Ti(0-i-Pr)4 in a 2 1 ratio is more selective than the catalyst formed from a 1 1 mixture [19fj. The former catalyst was shown to catalyze the cycloaddition reaction of aldehydes 1 with Danishefsky s diene 2a affording the dihydropyrones 3 with moderate to excellent enantioselectivity (Scheme 4.12). The reaction proceeds well for different aldehydes with up to 97% ee and good yield of the cycloaddition products. [Pg.161]

A chiral vanadium complex, bis(3-(heptafluorobutyryl)camphorato)oxovana-dium(IV), can catalyze the cycloaddition reaction of, mainly, benzaldehyde with dienes of the Danishefsky type with moderate to good enantioselectivity [21]. A thorough investigation was performed with benzaldehyde and different activated dienes, and reactions involving double stereo differentiation using a chiral aldehyde. [Pg.162]

Chiral salen chromium and cobalt complexes have been shown by Jacobsen et al. to catalyze an enantioselective cycloaddition reaction of carbonyl compounds with dienes [22]. The cycloaddition reaction of different aldehydes 1 containing aromatic, aliphatic, and conjugated substituents with Danishefsky s diene 2a catalyzed by the chiral salen-chromium(III) complexes 14a,b proceeds in up to 98% yield and with moderate to high ee (Scheme 4.14). It was found that the presence of oven-dried powdered 4 A molecular sieves led to increased yield and enantioselectivity. The lowest ee (62% ee, catalyst 14b) was obtained for hexanal and the highest (93% ee, catalyst 14a) was obtained for cyclohexyl aldehyde. The mechanism of the cycloaddition reaction was investigated in terms of a traditional cycloaddition, or formation of the cycloaddition product via a Mukaiyama aldol-reaction path. In the presence of the chiral salen-chromium(III) catalyst system NMR spectroscopy of the crude reaction mixture of the reaction of benzaldehyde with Danishefsky s diene revealed the exclusive presence of the cycloaddition-pathway product. The Mukaiyama aldol condensation product was prepared independently and subjected to the conditions of the chiral salen-chromium(III)-catalyzed reactions. No detectable cycloaddition product could be observed. These results point towards a [2-i-4]-cydoaddition mechanism. [Pg.162]

Danishefsky et al. were probably the first to observe that lanthanide complexes can catalyze the cycloaddition reaction of aldehydes with activated dienes [24]. The reaction of benzaldehyde la with activated conjugated dienes such as 2d was found to be catalyzed by Eu(hfc)3 16 giving up to 58% ee (Scheme 4.16). The ee of the cycloaddition products for other substrates was in the range 20-40% with 1 mol% loading of 16. Catalyst 16 has also been used for diastereoselective cycloaddition reactions using chiral 0-menthoxy-activated dienes derived from (-)-menthol, giving up to 84% de [24b,c] it has also been used for the synthesis of optically pure saccharides. [Pg.163]

Different main-group-, transition- and lanthanide-metal complexes can catalyze the cycloaddition reaction of activated aldehydes with activated and non-activated dienes. The chiral metal complexes which can catalyze these reactions include complexes which enable substrates to coordinate in a mono- or bidentate fashion. [Pg.164]

Few investigations have included chiral lanthanide complexes as catalysts for cycloaddition reactions of activated aldehydes [42]. The reaction of tert-butyl glyoxylate with Danishefsky s diene gave the expected cycloaddition product in up to 88% yield and 66% ee when a chiral yttrium bis-trifluoromethanesulfonylamide complex was used as the catalyst. [Pg.173]

The major developments of catalytic enantioselective cycloaddition reactions of carbonyl compounds with conjugated dienes have been presented. A variety of chiral catalysts is available for the different types of carbonyl compound. For unactivated aldehydes chiral catalysts such as BINOL-aluminum(III), BINOL-tita-nium(IV), acyloxylborane(III), and tridentate Schiff base chromium(III) complexes can catalyze highly diastereo- and enantioselective cycloaddition reactions. The mechanism of these reactions can be a stepwise pathway via a Mukaiyama aldol intermediate or a concerted mechanism. For a-dicarbonyl compounds, which can coordinate to the chiral catalyst in a bidentate fashion, the chiral BOX-copper(II)... [Pg.182]

The elegant, enantiospecific synthesis of biotin (1) by Hoffmann-La Roche1 is based on a strategy that takes advantage of the powerful intramolecular nitrone-olefin cycloaddition reaction. Our analysis begins with model studies in which the straightforward conversion of L-cysteine (2) into aldehyde 3 (see Scheme 1) constitutes... [Pg.286]

The most frequently encountered, and most useful, cycloaddition reactions of silyl enol ethers are Diels-Alder reactions involving silyloxybutadicncs (Chapter 18). Danishefsky (30) has reviewed his pioneering work in this area, and has extended his studies to include heterodienophiles, particularly aldehydes. Lewis acid catalysis is required in such cases, and substantial asymmetric induction can be achieved using either a chiral lanthanide catalyst or an a-chiral aldehyde. [Pg.66]

Iwasawa et al. also developed a new reaction involving a three-component coupling process which affords five-membered heterocycles. This [2s+2sh-1c] cycloaddition reaction supposes the consecutive addition of an alkynyllithium derivative to a Fischer carbene complex followed by the addition of a third component which can be an aldehyde, an imine, an isocyanate, or C02 [119] (Scheme 74). [Pg.107]

Cycloaddition reactions of the simple alkyl and aryl aldehydes 65 with (E)-l-methoxy-1,3-butadiene (18b) under high pressure conditions afforded adducts 66 and 67 in reasonable to good yields [2g, 23]. A marked preference for the c applying pressure enforces cnJo-addition (Scheme 5.5). Using mild Lewis-acid catalysts [24], such as Eu(fod)3, Yb(fod)3, or Eu(hfc)3, in combination with pressure, allows good results to be obtained with the added advantage of reducing the pressure to 10 kbar [25] (Scheme 5.5). [Pg.214]

Secondary orbital interactions (SOI) (Fig. 2) [5] between the non-reacting centers have been proposed to determine selectivities. For example, cyclopentadiene undergoes a cycloaddition reaction with acrolein 1 at 25 °C to give a norbomene derivative (Fig. 2a) [6]. The endo adduct (74.4%) was preferred over the exo adduct (25.6%). This endo selectivity has been interpreted in terms of the in-phase relation between the HOMO of the diene at the 2-position and the LUMO at the carbonyl carbon in the case of the endo approach (Fig. 2c). An unfavorable SOI (Fig. 2d) has also been reported for the cycloaddition of cyclopentadiene and acetylenic aldehyde 2 and its derivatives (Fig. 2b) [7-9]. The exo-TS has been proposed to be favored over the endo- IS. [Pg.131]

Olefination Reactions Involving Phosphonium Ylides. The synthetic potential of phosphonium ylides was developed initially by G. Wittig and his associates at the University of Heidelberg. The reaction of a phosphonium ylide with an aldehyde or ketone introduces a carbon-carbon double bond in place of the carbonyl bond. The mechanism originally proposed involves an addition of the nucleophilic ylide carbon to the carbonyl group to form a dipolar intermediate (a betaine), followed by elimination of a phosphine oxide. The elimination is presumed to occur after formation of a four-membered oxaphosphetane intermediate. An alternative mechanism proposes direct formation of the oxaphosphetane by a cycloaddition reaction.236 There have been several computational studies that find the oxaphosphetane structure to be an intermediate.237 Oxaphosphetane intermediates have been observed by NMR studies at low temperature.238 Betaine intermediates have been observed only under special conditions that retard the cyclization and elimination steps.239... [Pg.158]


See other pages where Aldehydes 3+2 cycloaddition reactions is mentioned: [Pg.13]    [Pg.183]    [Pg.872]    [Pg.217]    [Pg.270]    [Pg.154]    [Pg.161]    [Pg.163]    [Pg.164]    [Pg.239]    [Pg.179]    [Pg.419]    [Pg.1292]    [Pg.272]    [Pg.287]    [Pg.40]    [Pg.150]    [Pg.142]   
See also in sourсe #XX -- [ Pg.216 , Pg.217 , Pg.218 ]




SEARCH



Aldehydes cycloadditions

Aldehydes, cycloaddition

© 2024 chempedia.info