Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Active aldehyde

Different chiral transition- and lanthanide-metal complexes can catalyze the cycloaddition reaction of unactivated and activated aldehydes with especially activated... [Pg.160]

Different main-group-, transition- and lanthanide-metal complexes can catalyze the cycloaddition reaction of activated aldehydes with activated and non-activated dienes. The chiral metal complexes which can catalyze these reactions include complexes which enable substrates to coordinate in a mono- or bidentate fashion. [Pg.164]

Few investigations have included chiral lanthanide complexes as catalysts for cycloaddition reactions of activated aldehydes [42]. The reaction of tert-butyl glyoxylate with Danishefsky s diene gave the expected cycloaddition product in up to 88% yield and 66% ee when a chiral yttrium bis-trifluoromethanesulfonylamide complex was used as the catalyst. [Pg.173]

The addition reaction requires the presence of 4 equivalents of HMPA, thus partial racemization of optically active aldehydes under these basic conditions is anticipated. Unfortunately, the addition of magnesium bromide, zinc chloride or cadmium iodide reverses the regioselectivity11 ... [Pg.245]

Hydroformylation has been extensively studied since it produces optically active aldehydes which could be important precursors for pharmaceutical and fine chemical compounds. Thus, asymmetric hydroformylation of styrene (Scheme 27) is a model reaction for the synthesis of ibuprofen or naproxen. Phosphorus ligands were used for this reaction with excellent results, espe-... [Pg.249]

Example Optically active aldehyde (10) was needed for a synthesis of biotin. The compound has a 1,1-dlX disconnection (10a) clearly available and a C-N (amide) disconnection leaving (11) which has the same skeleton as the amino acid cysteine (12). [Pg.114]

The azolide method has been used successfully in the conversion of an optically active aldehyde into the corresponding nitrile, with an optical purity of 100% [6]... [Pg.366]

Derivatization of the optically active aldehydes to imines has been used for determination of their enantiomeric excess. Chi et al.3 have examined a series of chiral primary amines as a derivatizing agent in determination of the enantiomeric purity of the a-substituted 8-keto-aldehydes obtained from catalysed Michael additions. The imine proton signals were well resolved even if the reaction was not completed. The best results were obtained when chiral amines with —OMe or —COOMe groups were used [2], The differences in chemical shifts of diastereo-meric imine proton were ca. 0.02-0.08 ppm depending on amine. This method has been also used for identification of isomers of self-aldol condensation of hydrocinnamaldehyde. [Pg.129]

Tanaka et al.28 have synthesised a series of (S)-chiral Schiff bases as the highly active (yield 69-99%) and enatioselective (ee 50-96%) catalysts in the reaction of addition of dialkylzinc to aldehydes. The stereochemistry of the asymmetric addition was suggested. In a transition state when S-chiral Schiff base was used as chiral source, the alkyl nucleophile attacked Re face of the activated aldehyde and formed the R-configuration alkylated product [13]. [Pg.138]

In asymmetric reactions, chiral phosphine ligands such as BINAP derivatives are used as effective chiral ligands in silver complexes. In particular, an Agr-BINAP complex activates aldehydes and imines effectively and asymmetric allylations,220-222 aldol reactions 223 and Mannich-type reactions224 proceed in high yield with high selectivity (Scheme 51). [Pg.422]

A novel metal free approach for the synthesis of substituted quinolines 93 was reported using a HCl(cat)-DMSO system <06JOC800>. A catalytic amount of HC1 in DMSO activates aldehydes 94, which react with benzylideneanilines 95 to form substituted quinolines 93. [Pg.327]

Although the asymmetric isomerization of allylamines has been successfully accomplished by the use of a cationic rhodium(l)/BINAP complex, the corresponding reaction starting from allylic alcohols has had a limited success. In principle, the enantioselective isomerization of allylic alcohols to optically active aldehydes is more advantageous because of its high atom economy, which can eliminate the hydrolysis step of the corresponding enamines obtained by the isomerization of allylamines (Scheme 26). [Pg.83]

Reductive Coupling of Conjugated Enynes and Diynes with Activated Aldehydes and Imines... [Pg.726]

Optically active aldehydes are important precursors for biologically active compounds, and much effort has been applied to their asymmetric synthesis. Asymmetric hydroformylation has attracted much attention as a potential route to enantiomerically pure aldehyde because this method starts from inexpensive olefins and synthesis gas (CO/H2). Although rhodium-catalyzed hydrogenation has been one of the most important applications of homogeneous catalysis in industry, rhodium-mediated hydroformylation has also been extensively studied as a route to aldehydes. [Pg.384]

Thus, the involvement of one of the following three possible mechanisms has been suggested (i) nucleophilic addition of the acylzirconocene chloride to the Lewis acid activated aldehyde, (ii) nucleophilic addition of the cationic species of the acylzirconocene chloride formed by an Ag(I) salt or a Lewis acid, or (iii) transmetalation of the acylzirconocene chloride with the Lewis acid and subsequent nucleophilic addition. [Pg.156]

On the other hand, Ln(OTf)3 compounds, which were found to be effective catalysts for the hydroxy-methylation in aqueous media, also activate aldehydes other than formaldehyde in aldol reactions with silyl enol ethers in aqueous solvents.1121 One feature of the present reactions is that water-soluble... [Pg.5]

The modem concept of asymmetric induction is illustrated by the formulas in Fig. 1. As shown, the addition of hydrogen cyanide to the optically active aldehyde can lead to two diastereomers (1 and 2). If the process is under thermodynamic control, the formation of the more stable isomer will be favored that is, that isomer for which the non-bonded interactions between the newly formed cyano and the hydroxyl groups with the dissymmetric R group are weakest. On the other hand, the difference in the yields of 1 and 2 can be the result of kinetic control arising from a difference in the energies of the transition states—that state with the lower energy will form faster and lead to the product of higher yield. It is noteworthy that the tenets... [Pg.2]

The phosphine-phosphite BINAPHOS ligand was first used in the Rh-catalyzed asymmetric hydroformylation of heterocyclic olefins such as 2,5-dihydrofuran, 3-pyrroline derivatives, and 4,7-dihydro-1,3-dioxepin derivatives. It provided the optically active aldehydes as single products with enantioselectivity between 64-76% ee. In the hydroformylation of 2,5-di-... [Pg.65]

Hydroformylation of hetero olefins such as carbonyl compounds is not known to proceed with significant levels of efficiency, whereas the hydroformylation of olefins has been developed to a sophisticated stage. Generally, aldehydes resultant from the latter process exhibit a low propensity to undergo further hydroformylation, with the exception of some activated aldehydes. The rhodium-catalyzed hydroformylation of formaldehyde is the key step in the synthesis of ethyleneglycol from synthesis gas. Chan et al. found... [Pg.220]

Entry Aldehyde Enolate activation Aldehyde activation ... [Pg.57]

However, cyanide ion is not suitable for inducing a benzoin-type condensation between two aliphatic aldehydes, since the basic character of this ion induces an aldol condensation between them. In Nature, nevertheless, condensations of this type take place easily. As Breslow proposed in 1958 [8], such condensations are catalysed by thiamine pyrophosphate 6 (or cocarboxylase), the active part of which is the conjugate base of the "thiazolium cation present in it. According to Breslow [8a], the mechanism is, in fact, identical to that described for the cyanide ion (see Scheme 5.7) that is to say, the conjugate base of thiamine (TPP ) reacts with an "aldehyde equivalent -such as an a-ketoacid 2- to generate the corresponding "active aldehyde" 8 with umpoled reactivity, which then reacts with the electrophile to give finally, after elimination of "thiamine anion", a 1,2-D system (9). [Pg.118]

In fact, reactions of "active aldehydes" with umpoled reactivity are so common in Nature that some redundancy is observed [10].l2 Thus, the acetylation of CoA... [Pg.119]

Thiamine diphosphate (TPP, 3), in cooperation with enzymes, is able to activate aldehydes or ketones as hydroxyalkyl groups and then to pass them on to other molecules. This type of transfer is important in the transketo-lase reaction, for example (see p. 152). Hydroxyalkyl residues also arise in the decarboxylation of 0x0 acids. In this case, they are released as aldehydes or transferred to lipoamide residues of 2-oxoacid dehydrogenases (see p. 134). The functional component of TPP is the sulfur- and nitrogen-containing thiazole ring. [Pg.106]


See other pages where Active aldehyde is mentioned: [Pg.394]    [Pg.86]    [Pg.164]    [Pg.164]    [Pg.339]    [Pg.667]    [Pg.1242]    [Pg.117]    [Pg.250]    [Pg.334]    [Pg.336]    [Pg.305]    [Pg.83]    [Pg.437]    [Pg.117]    [Pg.14]    [Pg.46]    [Pg.203]    [Pg.49]    [Pg.366]    [Pg.26]    [Pg.47]    [Pg.31]   
See also in sourсe #XX -- [ Pg.54 ]




SEARCH



© 2024 chempedia.info