Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldehyde-ketene cycloaddition

Lipstatin is a natural product that exhibits potent inhibitor activity of the pancreatic lipase, and therefore it is a potential lead for the development of antiobesity agents. P.J. Kocienski developed a synthesis for this compound that incorporates an aldehyde-ketene cycloaddition as the key step. The reaction between the aldehyde and silylketene derivative was carried out in the presence of EtAICIs that served as the Lewis acid activator. This transformation led to the formation of four diastereomers in 91% yield, but after desilylation, the desired stereoisomer could be isolated in 64% yield from the mixture. [Pg.427]

The bis(acyl chloride) from adipic acid reacts with imines generated in situ from 2-aminobenzothiazole and aryl aldehydes in the presence of zeohtes as acid catalysts resulting in formation of bis(p-lactams) (Scheme 4.31). The reactions were found to be enhanced by the use of ultrasound, and while the reactions were presumably largely stepwise bisketenes can be formed under these conditions. The preparation of bis- and poly(p-lactams) by ketene cycloadditions has been reviewed. [Pg.287]

Simple olefins do not usually add well to ketenes except to ketoketenes and halogenated ketenes. Mild Lewis acids as well as bases often increase the rate of the cyclo addition. The cycloaddition of ketenes to acetylenes yields cyclobutenones. The cycloaddition of ketenes to aldehydes and ketones yields oxetanones. The reaction can also be base-cataly2ed if the reactant contains electron-poor carbonyl bonds. Optically active bases lead to chiral lactones (41—43). The dimerization of the ketene itself is the main competing reaction. This process precludes the parent compound ketene from many [2 + 2] cyclo additions. Intramolecular cycloaddition reactions of ketenes are known and have been reviewed (7). [Pg.474]

In 1959 Carboni and Lindsay first reported the cycloaddition reaction between 1,2,4,5-tetrazines and alkynes or alkenes (59JA4342) and this reaction type has become a useful synthetic approach to pyridazines. In general, the reaction proceeds between 1,2,4,5-tetrazines with strongly electrophilic substituents at positions 3 and 6 (alkoxycarbonyl, carboxamido, trifluoromethyl, aryl, heteroaryl, etc.) and a variety of alkenes and alkynes, enol ethers, ketene acetals, enol esters, enamines (78HC(33)1073) or even with aldehydes and ketones (79JOC629). With alkenes 1,4-dihydropyridazines (172) are first formed, which in most cases are not isolated but are oxidized further to pyridazines (173). These are obtained directly from alkynes which are, however, less reactive in these cycloaddition reactions. In general, the overall reaction which is presented in Scheme 96 is strongly... [Pg.50]

The initial reaction between a ketene and an enamine is apparently a 1,2 cycloaddition to form an aminocyclobutanone adduct (58) (68-76a). This reaction probably occurs by way of an ionic zwitterion intermediate (75). The thermal stability of this adduct depends upon the nature of substituents Rj, R2, R3, and R. The enolic forms of 58 can exist only if Rj and/or R4 are hydrogens. If the enamine involved in the reaction is an aldehydic enamine with no 3 hydrogens and the ketene involved is di-substituted (i.e., R, R2, R3, and R4 are not hydrogens), then the cyclo-butanone adduct is thermally stable. For example, the reaction of dimethyl-ketene (61) with N,N-dimethylaminoisobutene (10) in isopropyl acetate... [Pg.225]

Abstract The photoinduced reactions of metal carbene complexes, particularly Group 6 Fischer carbenes, are comprehensively presented in this chapter with a complete listing of published examples. A majority of these processes involve CO insertion to produce species that have ketene-like reactivity. Cyclo addition reactions presented include reaction with imines to form /1-lactams, with alkenes to form cyclobutanones, with aldehydes to form /1-lactones, and with azoarenes to form diazetidinones. Photoinduced benzannulation processes are included. Reactions involving nucleophilic attack to form esters, amino acids, peptides, allenes, acylated arenes, and aza-Cope rearrangement products are detailed. A number of photoinduced reactions of carbenes do not involve CO insertion. These include reactions with sulfur ylides and sulfilimines, cyclopropanation, 1,3-dipolar cycloadditions, and acyl migrations. [Pg.157]

Wilson JE, Fu GC (2004) Asymmetric synthesis of highly substituted P-lactones by nucleophile-catalyzed [2 -t 2] cycloadditions of disubstituted ketenes with aldehydes. Angew Chem Int Ed 43 6358-6360... [Pg.174]

The existence of ketenes was established over a hundred years ago, and, in recent years, asymmetric synthesis based on [2 + 2] cycloadditions of ketenes with carbonyl compounds to form chiral p-lactones has been achieved with high yields and high stereoselectivities. In 1994, Miyano et al. reported the use of Ca-symmetric bis(sulfonamides) as ligands of trialkylaluminum complexes to promote the asymmetric [2 + 2] cycloaddition of ketenes with aldehydes. The corresponding oxetanones were obtained in good yields and enantioselectivities... [Pg.304]

Scheme 10.15 [2 + 2] Cycloadditions of ketene with aldehydes catalysed by bis... Scheme 10.15 [2 + 2] Cycloadditions of ketene with aldehydes catalysed by bis...
Dihydro-2H-pyran-2-ones (e. g., 4-195) are valuable intermediates in the synthesis of several natural products [67]. Hattori, Miyano and coworkers [68] have recently shown that these compounds can be easily obtained in high yield by a Pd2+-catalyzed [2+2] cycloaddition of ct, 3-unsaturated aldehydes 4-192 with ketene 4-193, followed by an allylic rearrangement of the intermediate 4-194 (Scheme 4.42). In this reaction the Pd2+-compound acts as a mild Lewis acid. a,(3-unsaturated ketones can also be used, but the yields are below 20%. [Pg.307]

The cycloaddition of aldehydes and ketones with ketene under the influence of quinine or quinidine produce chiral 2-oxetanones [46,47]. Solvolytic cleavage of the oxetanone, derived from chloral, and further solvolysis of the trichloromethyl group leads to (5)- and (R)-malic acids with a 98% ee [46] (the chirality of the product depends on the configuration of the catalyst at C-8 and, unlike other alkaloid-induced reactions, it is apparently independent of the presence of the hydroxyl group). No attempts have been made to catalyse the reaction with chiral ammonium salts. [Pg.529]

As demonstrated in a series of kinetic experiments by Wittkopp and Schreiner, nitrone N-benzylideneanihne N-oxide can be activated for 1,3-dipolar cycloadditions through double hydrogen-bonding 9 [Ij. Takemoto and co-workers, in 2003, published the nucleophilic addition of TMSCN and ketene silyl acetals to nitrones and aldehydes proceeding in the presence of thiourea organocatalyst 9 (Figure 6.4) [147]. [Pg.150]


See other pages where Aldehyde-ketene cycloaddition is mentioned: [Pg.231]    [Pg.231]    [Pg.52]    [Pg.302]    [Pg.227]    [Pg.419]    [Pg.793]    [Pg.247]    [Pg.4]    [Pg.267]    [Pg.100]    [Pg.87]    [Pg.343]    [Pg.298]    [Pg.240]    [Pg.41]    [Pg.456]    [Pg.438]    [Pg.70]    [Pg.531]    [Pg.256]    [Pg.824]    [Pg.80]    [Pg.59]    [Pg.43]    [Pg.159]    [Pg.257]    [Pg.27]   
See also in sourсe #XX -- [ Pg.427 ]




SEARCH



Aldehyde-ketene

Aldehydes cycloadditions

Aldehydes, cycloaddition

Cycloaddition of Ketenes and Aldehydes

Ketene 2 + 2] cycloadditions

Ketene cycloaddition

Ketenes cycloaddition

Ketenes, cycloadditions

© 2024 chempedia.info