Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Air, oxidation

Of little use commercially except as a route to anthraquinone. For this purpose it is oxidized with acid potassium dichromate solution, or better, by a catalytic air oxidation at 180-280 C, using vanadates or other metal oxide catalysts. [Pg.36]

It has been used as a bird repellant and is the parent compound of the anthraquinone vat dyes in which the dyeing is carried out by immersion in the reduced vat solution followed by air oxidation to the original insoluble compound. [Pg.37]

It was first described in 1608 when it was sublimed out of gum benzoin. It also occurs in many other natural resins. Benzoic acid is manufactured by the air oxidation of toluene in the liquid phase at 150°C and 4-6 atm. in the presence of a cobalt catalyst by the partial decarboxylation of phthalic anhydride in either the liquid or vapour phase in the presence of water by the hydrolysis of benzotrichloride (from the chlorination of toluene) in the presence of zinc chloride at 100°C. [Pg.56]

The sweetening operation consists of converting the mercaptans to disulfides by air oxidation in the presence of a catalyst in a caustic environment. [Pg.404]

Not so for synthesis in the chemical industry where a compound must be prepared not only on a large scale but at low cost There is a pronounced bias toward reactants and reagents that are both abundant and inexpensive The oxidizing agent of choice for example in the chemical industry is O2 and extensive research has been devoted to develop mg catalysts for preparing various compounds by air oxidation of readily available starting materials To illustrate air and ethylene are the reactants for the industrial preparation of both acetaldehyde and ethylene oxide Which of the two products is ob tamed depends on the catalyst employed... [Pg.644]

A second dangerous property of ethers is the ease with which they undergo oxi dation in air to form explosive peroxides Air oxidation of diisopropyl ether proceeds according to the equation... [Pg.674]

The reaction follows a free radical mechanism and gives a hydroperoxide a compound of the type ROOH Hydroperoxides tend to be unstable and shock sensitive On stand mg they form related peroxidic derivatives which are also prone to violent decomposi tion Air oxidation leads to peroxides within a few days if ethers are even briefly exposed to atmospheric oxygen For this reason one should never use old bottles of dialkyl ethers and extreme care must be exercised m their disposal... [Pg.674]

Section 16 7 Dialkyl ethers are useful solvents for organic reactions but must be used cautiously due to their tendency to form explosive hydroperoxides by air oxidation in opened bottles... [Pg.692]

Phosphorus, white Air, oxidants of all types, halogens, metals... [Pg.1211]

Another reducing titrant is ferrous ammonium sulfate, Fe(NH4)2(S04)2 6H2O, in which iron is present in the +2 oxidation state. Solutions of Fe + are normally very susceptible to air oxidation, but when prepared in 0.5 M 1T2S04 the solution may remain stable for as long as a month. Periodic restandardization with K2Cr20y is advisable. The titrant can be used in either a direct titration in which the Fe + is oxidized to Fe +, or an excess of the solution can be added and the quantity of Fe + produced determined by a back titration using a standard solution of Ce + or... [Pg.344]

Wentworth process Weston cell Wet air oxidation Wet ball mill Wet-end additives Wet etching Wetfastness Wet grinding... [Pg.1068]

Butane-Naphtha Catalytic Liquid-Phase Oxidation. Direct Hquid-phase oxidation ofbutane and/or naphtha [8030-30-6] was once the most favored worldwide route to acetic acid because of the low cost of these hydrocarbons. Butane [106-97-8] in the presence of metallic ions, eg, cobalt, chromium, or manganese, undergoes simple air oxidation in acetic acid solvent (48). The peroxidic intermediates are decomposed by high temperature, by mechanical agitation, and by action of the metallic catalysts, to form acetic acid and a comparatively small suite of other compounds (49). Ethyl acetate and butanone are produced, and the process can be altered to provide larger quantities of these valuable materials. Ethanol is thought to be an important intermediate (50) acetone forms through a minor pathway from isobutane present in the hydrocarbon feed. Formic acid, propionic acid, and minor quantities of butyric acid are also formed. [Pg.68]

Bromoacetic acid can be prepared by the bromination of acetic acid in the presence of acetic anhydride and a trace of pyridine (55), by the HeU-VoUiard-Zelinsky bromination cataly2ed by phosphoms, and by direct bromination of acetic acid at high temperatures or with hydrogen chloride as catalyst. Other methods of preparation include treatment of chloroacetic acid with hydrobromic acid at elevated temperatures (56), oxidation of ethylene bromide with Aiming nitric acid, hydrolysis of dibromovinyl ether, and air oxidation of bromoacetylene in ethanol. [Pg.90]

Historically, the development of the acrylates proceeded slowly they first received serious attention from Otto Rohm. AcryUc acid (propenoic acid) was first prepared by the air oxidation of acrolein in 1843 (1,2). Methyl and ethyl acrylate were prepared in 1873, but were not observed to polymerize at that time (3). In 1880 poly(methyl acrylate) was reported by G. W. A. Kahlbaum, who noted that on dry distillation up to 320°C the polymer did not depolymerize (4). Rohm observed the remarkable properties of acryUc polymers while preparing for his doctoral dissertation in 1901 however, a quarter of a century elapsed before he was able to translate his observations into commercial reaUty. He obtained a U.S. patent on the sulfur vulcanization of acrylates in 1912 (5). Based on the continuing work in Rohm s laboratory, the first limited production of acrylates began in 1927 by the Rohm and Haas Company in Darmstadt, Germany (6). Use of this class of compounds has grown from that time to a total U.S. consumption in 1989 of approximately 400,000 metric tons. Total worldwide consumption is probably twice that. [Pg.162]

Quality Specifications. Because of the extreme sensitivity of polyamide synthesis to impurities ia the iagredients (eg, for molecular-weight control, dye receptivity), adipic acid is one of the purest materials produced on a large scale. In addition to food-additive and polyamide specifications, other special requirements arise from the variety of other appHcations. Table 8 summarizes the more important specifications. Typical impurities iaclude monobasic acids arising from the air oxidation step ia synthesis, and lower dibasic acids and nitrogenous materials from the nitric acid oxidation step. Trace metals, water, color, and oils round out the usual specification Hsts. [Pg.246]

Secondary alcohols (C q—for surfactant iatermediates are produced by hydrolysis of secondary alkyl borate or boroxiae esters formed when paraffin hydrocarbons are air-oxidized ia the presence of boric acid [10043-35-3] (19,20). Union Carbide Corporation operated a plant ia the United States from 1964 until 1977. A plant built by Nippon Shokubai (Japan Catalytic Chemical) ia 1972 ia Kawasaki, Japan was expanded to 30,000 t/yr capacity ia 1980 (20). The process has been operated iadustriaHy ia the USSR siace 1959 (21). Also, predominantiy primary alcohols are produced ia large volumes ia the USSR by reduction of fatty acids, or their methyl esters, from permanganate-catalyzed air oxidation of paraffin hydrocarbons (22). The paraffin oxidation is carried out ia the temperature range 150—180°C at a paraffin conversion generally below 20% to a mixture of trialkyl borate, (RO)2B, and trialkyl boroxiae, (ROBO). Unconverted paraffin is separated from the product mixture by flash distillation. After hydrolysis of residual borate esters, the boric acid is recovered for recycle and the alcohols are purified by washing and distillation (19,20). [Pg.460]

Raw Materials. Eor the first decade of PET manufacture, only DMT could be made sufficiently pure to produce high molecular weight PET. DMT is made by the catalytic air oxidation of -xylene to cmde TA, esterification with methanol, and purification by crystallization and distillation. After about 1965, processes to purify cmde TA by hydrogenation and crystallization became commercial (52) (see Phthalic ACID AND OTHER... [Pg.327]

Oxidation of a glycol can lead to a variety of products. Periodic acid quantitatively cleaves 1,2-glycols to aldehydes and is used as an analysis method for glycols (12,13). The oxidation of propylene glycol over Pd/C modified with Pb, Bi, or Te forms a mixture of lactic acid, hydroxyacetone, and pymvic acid (14). Air oxidation of propylene glycol using an electrolytic crystalline silver catalyst yields pymvic aldehyde. [Pg.366]

Melanin Drying. One development (ca 1993) in hair coloring involves the formation of pigments within the hair that are very similar to natural melanin. Thus either catalytic or air oxidation of 5,6-dihydroxyindole [3131-52-0] can be effectively used to permanently dye hair within a short time (38). The formed color can, if required, be further modulated with dilute H2O2 or can be even totally removed from hair by this oxidant. [Pg.457]

Oxidation Inhibitors. When oil is heated in the presence of air, oxidation occurs. As a result of this oxidation, the oil viscosity and the... [Pg.265]

Resorcinol or hydroquinone production from m- or -diisopropylben2ene [100-18-5] is realized in two steps, air oxidation and cleavage, as shown above. Air oxidation to obtain the dihydroperoxide (DHP) coproduces the corresponding hydroxyhydroperoxide (HHP) and dicarbinol (DC). This formation of alcohols is inherent to the autooxidation process itself and the amounts increase as DIPB conversion increases. Generally, this oxidation is carried out at 90—100°C in aqueous sodium hydroxide with eventually, in addition, organic bases (pyridine, imidazole, citrate, or oxalate) (8) as well as cobalt or copper salts (9). [Pg.488]

Other Methods. A variety of other methods have been studied, including phenol hydroxylation by N2O with HZSM-5 as catalyst (69), selective access to resorcinol from 5-methyloxohexanoate in the presence of Pd/C (70), cyclotrimerization of carbon monoxide and ethylene to form hydroquinone in the presence of rhodium catalysts (71), the electrochemical oxidation of benzene to hydroquinone and -benzoquinone (72), the air oxidation of phenol to catechol in the presence of a stoichiometric CuCl and Cu(0) catalyst (73), and the isomerization of dihydroxybenzenes on HZSM-5 catalysts (74). [Pg.489]

G. Eriedhofen, H. Kerres, J. Rosembaum, and R. Thiel, "Wet Air Oxidation of Waste Water," report to Bundesministerium fur Eorshung und Technologic (BMFT), Dec. 1980. [Pg.502]

The main processes for the manufacture of hydroxybenzaldehydes are based on phenol. The most widely used process is the saligenin process. Saligenin (2-hydroxybenzyl alcohol [90-01-7]) and 4-hydroxybenzyl alcohol [623-05-2] are produced from base-catalyzed reaction of formaldehyde with phenol (35). Air oxidation of saligenin over a suitable catalyst such as platinium or palladium produces sahcylaldehyde (62). [Pg.506]

The quantitative conversion of thiosulfate to tetrathionate is unique with iodine. Other oxidant agents tend to carry the oxidation further to sulfate ion or to a mixture of tetrathionate and sulfate ions. Thiosulfate titration of iodine is best performed in neutral or slightly acidic solutions. If strongly acidic solutions must be titrated, air oxidation of the excess of iodide must be prevented by blanketing the solution with an inert gas, such as carbon dioxide or... [Pg.364]

Iron(III) acetate [1834-30-6], Ee(C2H202)3, is prepared industrially by treatment of scrap iron with acetic acid followed by air oxidation. Iron(III) acetate is used as a catalyst in organic oxidation reactions, as a mordant, and as a starting material for the preparation of other iron-containing compounds. [Pg.433]


See other pages where Air, oxidation is mentioned: [Pg.49]    [Pg.16]    [Pg.54]    [Pg.559]    [Pg.221]    [Pg.342]    [Pg.343]    [Pg.358]    [Pg.365]    [Pg.528]    [Pg.148]    [Pg.182]    [Pg.241]    [Pg.244]    [Pg.464]    [Pg.469]    [Pg.80]    [Pg.159]    [Pg.275]    [Pg.286]    [Pg.502]    [Pg.339]    [Pg.433]    [Pg.434]    [Pg.434]   
See also in sourсe #XX -- [ Pg.206 ]

See also in sourсe #XX -- [ Pg.186 ]

See also in sourсe #XX -- [ Pg.278 ]

See also in sourсe #XX -- [ Pg.517 ]

See also in sourсe #XX -- [ Pg.194 ]

See also in sourсe #XX -- [ Pg.219 ]

See also in sourсe #XX -- [ Pg.456 ]

See also in sourсe #XX -- [ Pg.505 ]

See also in sourсe #XX -- [ Pg.317 ]

See also in sourсe #XX -- [ Pg.194 ]




SEARCH



Air Oxidation in the Dark

Air Oxidation of Cobalt(II) Ammine Complexes

Air as oxidant

Air as oxidizing agent

Air oxidation of alcohols

Air oxidation of foil and sheet coupons

Air oxidation of iodide

Air oxidation of iron

Air oxidation of propylene

Air oxidation of sour condensates

Air pollution by nitrogen oxides

Air pollution nitrogen oxides

Air, as an oxidant

Auto-oxidation in air

Butyl Alcohol Synthesis by Air Oxidation of Supercritical Isobutane

Case Study 3 Catalytic Wet-Air Oxidation Processes

Catalytic air oxidation

Catalytic oxidation of acetylene in air

Catalytic wet air oxidation

Catalytic wet air oxidation CWAO)

Direct Oxidation of Cyclohexane with Air

Effect of air oxidation

Low-Temperature CO Oxidation in Air

Nitrogen oxides in air

Nitrogen oxides in air pollution

Nitrogen oxides, air pollutants

Oxidant air pollutants

Oxidants oxygen/air

Oxidation behavior, in air

Oxidation in air

Oxidation of KA Oil with Air

Oxidation of Tungsten Metal by Air or Oxygen

Oxidation of ammonia with air

Oxidation with air

Oxidation with oxygen or air

Oxidation, by air

Oxidation, by air conversion of acetyl to carboxyl

Oxidation, by air group

Oxidation, by air in formic acid

Oxidation, by air of an amine to a nitroso compound

Perovskite-type Oxide Membranes for Air Separation

Temperature CO Oxidation in Air

Through Oxidation in Air

Wet air oxidation

Wet-air oxidation process

© 2024 chempedia.info