Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thinning agent

Surface active agents Textile processing assistants Textile scouring compounds and wetting agents Thin water (admixture)... [Pg.462]

When a block is inside, the entrance panel is closed and the inspection is ready to start. The inside of the stainless steel X-ray tubehead housing is clad in lead with an on/ofT shutter in front of a thin plastic X-ray window. The thin window is to ensure the IP 65 classification. The window is of plastic that is not affected by the cleaning agents. The on/off shutter is interlocked with the entrance and exit panels so X-rays can be kept on at all times without risk of radiation leakage or exposure of the frozen fish blocks prior to the actual inspection. [Pg.591]

A wide class of aiyl-based quaternary surfactants derives from heterocycles such as pyridine and quinoline. The Aralkyl pyridinium halides are easily synthesized from alkyl halides, and the paraquat family, based upon the 4, 4 -bipyridine species, provides many interesting surface active species widely studied in electron donor-acceptor processes. Cationic surfactants are not particularly useful as cleansing agents, but they play a widespread role as charge control (antistatic) agents in detergency and in many coating and thin film related products. [Pg.2577]

Rubber. Both natural and synthetic rubber are used as bonding agents for abrasive wheels. Rubber-bond wheels are ideal for thin cut-off and slicing wheels and centerless grinding feed wheels. They are more flexible and more water-resistant than resinoid wheels. [Pg.15]

If a linear mbber is used as a feedstock for the mass process (85), the mbber becomes insoluble in the mixture of monomers and SAN polymer which is formed in the reactors, and discrete mbber particles are formed. This is referred to as phase inversion since the continuous phase shifts from mbber to SAN. Grafting of some of the SAN onto the mbber particles occurs as in the emulsion process. Typically, the mass-produced mbber particles are larger (0.5 to 5 llm) than those of emulsion-based ABS (0.1 to 1 llm) and contain much larger internal occlusions of SAN polymer. The reaction recipe can include polymerization initiators, chain-transfer agents, and other additives. Diluents are sometimes used to reduce the viscosity of the monomer and polymer mixture to faciUtate processing at high conversion. The product from the reactor system is devolatilized to remove the unreacted monomers and is then pelletized. Equipment used for devolatilization includes single- and twin-screw extmders, and flash and thin film evaporators. Unreacted monomers are recovered for recycle to the reactors to improve the process yield. [Pg.204]

Sevin. 1-Naphthalenol methylcarbanate [63-25-2] (Sevin) (44) was developed as an insecticide. However, the conception of the molecule, in the mid-1950s, was as a possible herbicide. The compound ultimately was useless as a herbicide, but in routine testing it was discovered to be an excellent insecticide. Sevin was active in the oat mesocotyl assay and demonstrated weak auxin-like activity. During the development of Sevin, it caused massive apple drop in the western United States in an orchard being treated for insects. It is used (ca 1993) as an abscising agent to thin apples. [Pg.426]

In other areas, POD has been used to improve the wear resistance of a mbber latex binder by incorporation of 25% of Oksalon fibers. Heat-resistant laminate films, made by coating a polyester film with POD, have been used as electrical insulators and show good resistance to abrasion and are capable of 126% elongation. In some instances, thin sheets of PODs have been used as mold release agents. For this appHcation a resin is placed between the two sheets of POD, which is then pressed in a mold, and the sheets simply peel off from the object and mold after the resin has cured. POD-based membranes exhibit salt rejection properties and hence find potential as reverse osmosis membranes in the purification of seawater. PODs have also been used in the manufacturing of electrophotographic plates as binders between the toner and plate. These improved binders produce sharper images than were possible before. [Pg.535]

Constrained-Layer Treatments. Constrained-layer damping treatments consist of a thin layer (/ m) of viscoelastic material sandwiched between a base material and an outer constraining layer of sheet metal or other stmctural material. Some of these treatments are available with self-adhesives on both sides of the viscoelastic material and act as a bonding agent between the base and constraining layers others have the constraining layer already bonded to the inner layer so they need only be appHed to the base material. [Pg.321]

In the paste coating method, a PVC paste, which contains emulsion-polymerized PVC and additives, is appHed onto a substrate and heated to gelation before fusion to produce a coating layer. This method is employed for products with a thin layer, ie, of 0.007—0.05 mm thickness. For foamed vinyl-coated fabrics, a substrate is laminated onto a transfer paper on which a PVC paste containing a foam-blowing agent has been appHed and geUed. After removal of the transfer paper, the paste is blown. [Pg.93]

Fig. 15. Schematic of the interfacial polymerization process. The microporous film is first impregnated with an aqueous amine solution. The film is then treated with a multivalent cross-linking agent dissolved in a water-immiscible organic fluid, such as hexane or Freon-113. An extremely thin polymer film... Fig. 15. Schematic of the interfacial polymerization process. The microporous film is first impregnated with an aqueous amine solution. The film is then treated with a multivalent cross-linking agent dissolved in a water-immiscible organic fluid, such as hexane or Freon-113. An extremely thin polymer film...
The phenoHc resins used for particle board are NaOH-catalyzed resoles of low viscosity and high water miscibility, similar to the Hquid resole adhesives used in plywood manufacture. The higher resin and caustic content of the board frequently necessitates the addition of hydrophobic agents such as wax emulsions to increase the barrier properties of the board. The adhesive is appHed to the particles in thin streams using high agitation to maximize material usage. Boards are cured in presses for 5—10 min at 150—185°C. [Pg.306]

Metal Treatment. After rolling, the oxide scale on sheet steel is removed by acid treatment (pickling) (see Metal surface treatments). Phosphoric acid, a good pickling agent, leaves the steel coated with a thin film of iron phosphates. This process improves mst resistance but presents a problem if the steel is to be electroplated. [Pg.330]

Water Dispersions. Polysulftde products are offered as aqueous dispersions (Thiokol WD-6). These are useful for applyiag protective coatings to line fuel tanks, and for concrete, wood, and ia some cases fabrics, felt, leather (qv), and paper (qv). It has been found that a stable emulsion can be made that contains both LP and manganese oxide curing agent. The emulsion can be thinned and appHed as a spray coating. After it is appHed, water evaporates and the LP cures to form a soHd mbber (13). [Pg.459]

An excellent review of composite RO and nanofiltration (NE) membranes is available (8). These thin-fHm, composite membranes consist of a thin polymer barrier layer formed on one or more porous support layers, which is almost always a different polymer from the surface layer. The surface layer determines the flux and separation characteristics of the membrane. The porous backing serves only as a support for the barrier layer and so has almost no effect on membrane transport properties. The barrier layer is extremely thin, thus allowing high water fluxes. The most important thin-fHm composite membranes are made by interfacial polymerization, a process in which a highly porous membrane, usually polysulfone, is coated with an aqueous solution of a polymer or monomer and then reacts with a cross-linking agent in a water-kniniscible solvent. [Pg.144]


See other pages where Thinning agent is mentioned: [Pg.299]    [Pg.66]    [Pg.285]    [Pg.127]    [Pg.295]    [Pg.299]    [Pg.66]    [Pg.285]    [Pg.127]    [Pg.295]    [Pg.97]    [Pg.180]    [Pg.477]    [Pg.139]    [Pg.140]    [Pg.207]    [Pg.515]    [Pg.257]    [Pg.408]    [Pg.420]    [Pg.199]    [Pg.310]    [Pg.427]    [Pg.451]    [Pg.453]    [Pg.154]    [Pg.155]    [Pg.466]    [Pg.333]    [Pg.134]    [Pg.136]    [Pg.364]    [Pg.462]    [Pg.17]    [Pg.194]    [Pg.336]    [Pg.410]    [Pg.186]    [Pg.363]    [Pg.271]    [Pg.100]   
See also in sourсe #XX -- [ Pg.285 ]




SEARCH



Thin-film spreading agent

© 2024 chempedia.info