Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Treatment with Adsorbents

Commercial lecithin is insoluble but infinitely dispersible in water. Treatment with water dissolves small amounts of its decomposition products and adsorbed or coacervated substances, eg, carbohydrates and salts, especially in the presence of ethanol. However, a small percentage of water dissolves or disperses in melted lecithin to form an imbibition. Lecithin forms imbibitions or absorbates with other solvents, eg, alcohols, glycols, esters, ketones, ethers, solutions of almost any organic and inorganic substance, and acetone. It is remarkable that the classic precipitant for phosphoHpids, eg, acetone, dissolves in melted lecithin readily to form a thin, uniform imbibition. Imbibition often is used to bring a reactant in intimate contact with lecithin in the preparation of lecithin derivatives. [Pg.99]

Complex Coacervation. This process occurs ia aqueous media and is used primarily to encapsulate water-iminiscible Hquids or water-iasoluble soHds (7). In the complex coacervation of gelatin with gum arabic (Eig. 2), a water-iasoluble core material is dispersed to a desired drop size ia a warm gelatin solution. After gum arabic and water are added to this emulsion, pH of the aqueous phase is typically adjusted to pH 4.0—4.5. This causes a Hquid complex coacervate of gelatin, gum arabic, and water to form. When the coacervate adsorbs on the surface of the core material, a Hquid complex coacervate film surrounds the dispersed core material thereby forming embryo microcapsules. The system is cooled, often below 10°C, ia order to gel the Hquid coacervate sheU. Glutaraldehyde is added and allowed to chemically cross-link the capsule sheU. After treatment with glutaraldehyde, the capsules are either coated onto a substrate or dried to a free-flow powder. [Pg.318]

The refining process most commonly used involves treatment with hot aqueous alkaH to convert free fatty acids to soaps, followed by bleaching, usually with hydrogen peroxide, although sodium chlorite, sodium hypochlorite, and ozone have also been used. Other techniques include distillation, steam stripping, neutralization by alkaH, Hquid thermal diffusion, and the use of active adsorbents, eg, charcoal and bentonite, and solvent fractionation... [Pg.355]

Japan was the lea ding producer of iodine in the 1980s, producing nearly 7000 metric tons per year. Elemental iodine was released into brine by treatment with sodium nitrate or chlorine. The free iodine was then adsorbed on activated carbon. It was stripped from the carbon with sodium hydroxide followed by acidification to form a slurry of elemental iodine ... [Pg.411]

It was shown that Zn + adsorbed onto SG-PVSA composite film as Zn(Phen) complex. It can be detected spectrophotometrically after treatment with anionic dye Bengal Rose (BR). Ternary complex Zn + - Phen-BR formed on the surface under optimal conditions. SG-PVSA film was used for determination of Zn + by spectrophotometric method. The calibration graph was linear in the concentration range 2,5T0 - STO mol/l. [Pg.317]

It is known that not all reactions proceed in the same manner on all adsorbent layers because the material in the layer may promote or retard the reaction. Thus, Ganshirt [209] was able to show that caffeine and codeine phosphate could be detected on aluminium oxide by chlorination and treatment with benzidine, but that there was no reaction with the same reagent on silica gel. Again the detection of amino acids and peptides by ninhydrin is more sensitive on pure cellulose than it is on layers containing fluorescence indicators [210]. The NBP reagent (. v.) cannot be employed on Nano-Sil-Ci8-100-UV2S4 plates because the whole of the plate background becomes colored. [Pg.90]

The cobalt complex is usually formed in a hot acetate-acetic acid medium. After the formation of the cobalt colour, hydrochloric acid or nitric acid is added to decompose the complexes of most of the other heavy metals present. Iron, copper, cerium(IV), chromium(III and VI), nickel, vanadyl vanadium, and copper interfere when present in appreciable quantities. Excess of the reagent minimises the interference of iron(II) iron(III) can be removed by diethyl ether extraction from a hydrochloric acid solution. Most of the interferences can be eliminated by treatment with potassium bromate, followed by the addition of an alkali fluoride. Cobalt may also be isolated by dithizone extraction from a basic medium after copper has been removed (if necessary) from acidic solution. An alumina column may also be used to adsorb the cobalt nitroso-R-chelate anion in the presence of perchloric acid, the other elements are eluted with warm 1M nitric acid, and finally the cobalt complex with 1M sulphuric acid, and the absorbance measured at 500 nm. [Pg.688]

A large amount of water is added to the dehydrated material in order to cause it to swell the swollen structure is preserved when the material is frozen and subsequently dried in vacuo (in the frozen state) to a low moisture content. Some leaching occurs during the treatment with water and this, undoubtedly, further contributes to the increase in the porosity of the solid. Drying of the lyophilized substance can.be completed in a relatively short time in a vacuum oven at an elevated temperature, or at room temperature in the presence of an efficient water adsorbent. [Pg.43]

The drawback of the described adsorbents is the leakage of the bonded phase that may occur after the change of eluent or temperature of operation when the equilibrium of the polymer adsorption is disturbed. In order to prepare a more stable support Dulout et al. [31] introduced the treatment of porous silica with PEO, poly-lV-vinylpyrrolidone or polyvinylalcohol solution followed by a second treatment with an aqueous solution of a protein whose molecular weight was lower than that of the proteins to be separated. Possibly, displacement of the weakly adsorbed coils by the stronger interacting proteins produce an additional shrouding of the polymer-coated supports. After the weakly adsorbed portion was replaced, the stability of the mixed adsorption layer was higher. [Pg.144]

Optimum toxin production was found in a stirred, aerated culture medium consisting of potato infusion and sucrose after 3 to 5 days growth. The toxin was adsorbed on charcoal from the culture filtrate and eluted with chloroform. The red-brown residue remaining after evaporation showed little or no absorption in the carbonyl region of the infrared and only weak absorption in the ultraviolet. However, on mild treatment with acid, base, or heat two carbonyl peaks appeared at 1715 and 1685 cm.-1 in the infrared and at 266 mft in the ultraviolet (3). [Pg.111]

The reason for enhancement of adsorption performance of PA/AC was considered to be due to combination effect of increase of BET surface area and chemical modification by the treatment with PA. Consequently, lwt%-PA/AC was determined to be a best candidate as an adsorbent for removing benzene, toluene, p-xylene, methanol, ethanol, and iso-propanol. Therefore, lwt%-PA/AC was used as the adsorbent to investigate the adsorption isotherm, adsorption and desorption performance. [Pg.459]

Figure 2.6 Reagents used for the deactivation of silanol groups on glass surfaces. A - disilazanes, B > cyclic siloxanes, and C -silicon hydride polysiloxanes in which R is usually methyl, phenyl, 3,3,3-trifluoropropyl, 3-cyanopropyl, or some combination of these groups. The lover portion of the figure provides a view of the surface of fused silica with adsorbed water (D), fused silica surface after deactivation with a trimethylsilylating reagent (E), and fused silica surface after treatment with a silicon hydride polysiloxane (F). Figure 2.6 Reagents used for the deactivation of silanol groups on glass surfaces. A - disilazanes, B > cyclic siloxanes, and C -silicon hydride polysiloxanes in which R is usually methyl, phenyl, 3,3,3-trifluoropropyl, 3-cyanopropyl, or some combination of these groups. The lover portion of the figure provides a view of the surface of fused silica with adsorbed water (D), fused silica surface after deactivation with a trimethylsilylating reagent (E), and fused silica surface after treatment with a silicon hydride polysiloxane (F).

See other pages where Treatment with Adsorbents is mentioned: [Pg.157]    [Pg.207]    [Pg.207]    [Pg.232]    [Pg.412]    [Pg.476]    [Pg.124]    [Pg.410]    [Pg.1551]    [Pg.139]    [Pg.292]    [Pg.494]    [Pg.130]    [Pg.381]    [Pg.126]    [Pg.191]    [Pg.94]    [Pg.237]    [Pg.113]    [Pg.157]    [Pg.105]    [Pg.960]    [Pg.213]    [Pg.246]    [Pg.52]    [Pg.9]    [Pg.94]    [Pg.438]    [Pg.468]    [Pg.313]    [Pg.63]    [Pg.51]    [Pg.438]    [Pg.430]    [Pg.536]    [Pg.1169]    [Pg.198]   
See also in sourсe #XX -- [ Pg.131 , Pg.137 , Pg.139 , Pg.141 , Pg.338 ]




SEARCH



Treatment with

© 2024 chempedia.info