Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

ADIP method

The discretisation of the heat conduction equation can also be undertaken for three-dimensional temperature fields, and this is left to the reader to attempt. The stability condition (2.304) is tightened for the explicit difference formula which means time steps even smaller than those for planar problems. The system of equations of the implicit difference method cannot be solved by applying the ADIP-method, because it is unstable in three dimensions. Instead a similar method introduced by J. Douglas and H.H. Rachford [2.71], [2.72], is used, that is stable and still leads to tridiagonal systems. Unfortunately the discretisation error using this method is greater than that from ADIP, see also [2.53]. [Pg.213]

The preparation may be adapted from the experimental details given for Diethyl Adipate (Section 111,99). Another method is described in Section 111,100. [Pg.251]

Diethyl sebacate. Method A. Reflux a mixture of 100 g. of sebacic acid, 81 g. (102-5 ml.) of absolute ethyl alcohol, 190 ml. of sodium-dried benzene and 20 g. (11 ml.) of concentrated sulphuric acid for 36 hours. Work up as for Diethyl Adipate. B.p. 155-156°/6 mm. Yield 114 g. [Pg.387]

Successful results have been obtained (Renfrew and Chaney, 1946) with ethyl formate methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec.-butyl and iso-amyl acetat ethyleneglycol diacetate ethyl monochloro- and trichloro-acetates methyl, n-propyl, n-octyl and n-dodecyl propionates ethyl butyrate n-butyl and n-amyl valerates ethyl laurate ethyl lactate ethyl acetoacetate diethyl carbonate dimethyl and diethyl oxalates diethyl malonate diethyl adipate di-n-butyl tartrate ethyl phenylacetate methyl and ethyl benzoates methyl and ethyl salicylates diethyl and di-n-butyl phthalates. The method fails for vinyl acetate, ieri.-butyl acetate, n-octadecyl propionate, ethyl and >i-butyl stearate, phenyl, benzyl- and guaicol-acetate, methyl and ethyl cinnamate, diethyl sulphate and ethyl p-aminobenzoate. [Pg.393]

Trimethylene dibromide (Section 111,35) is easily prepared from commercial trimethj lene glycol, whilst hexamethylene dibromide (1 O dibromohexane) is obtained by the red P - Br reaction upon the glycol 1 6-hexanediol is prepared by the reduction of diethyl adipate (sodium and alcohol lithium aluminium hydride or copper-chromium oxide and hydrogen under pressure). Penta-methylene dibromide (1 5-dibromopentane) is readily produced by the red P-Brj method from the commercially available 1 5 pentanediol or tetra-hydropyran (Section 111,37). Pentamethylene dibromide is also formed by the action of phosphorus pentabromide upon benzoyl piperidine (I) (from benzoyl chloride and piperidine) ... [Pg.489]

Analytical Procedures. Standard methods for analysis of food-grade adipic acid are described ia the Food Chemicals Codex (see Refs, ia Table 8). Classical methods are used for assay (titration), trace metals (As, heavy metals as Pb), and total ash. Water is determined by Kad-Fisher titration of a methanol solution of the acid. Determination of color ia methanol solution (APHA, Hazen equivalent, max. 10), as well as iron and other metals, are also described elsewhere (175). Other analyses frequendy are required for resia-grade acid. For example, hydrolyzable nitrogen (NH, amides, nitriles, etc) is determined by distillation of ammonia from an alkaline solution. Reducible nitrogen (nitrates and nitroorganics) may then be determined by adding DeVarda s alloy and continuing the distillation. Hydrocarbon oil contaminants may be determined by ir analysis of halocarbon extracts of alkaline solutions of the acid. [Pg.246]

In the third method adipic acid is converted to ADN via dehydroamination with NH in the gas (131) or Hquid phase (132) a dehydration catalyst, usually phosphoric acid, is used. [Pg.232]

One of the methods used to isolate succinic acid from the waste stream of the adipic acid process is esterification of the mixture of succinic, glutaric, and adipic acid followed by fractionation (65—69). [Pg.535]

Succinic acid reacts with urea in aqeous solution to give a 2 1 compound having mp 141°C (116,117), which has low solubiUty in water. A method for the recovery of succinic acid from the wastes from adipic acid manufacture is based on this reaction (118,119). The monoamide succinamic acid [638-32-4] NH2COCH2CH2COOH, is obtained from ammonia and the anhydride or by partial hydrolysis of succinknide. The diamide succinamide [110-14-3], (CH2C0NH2)2, nip 268—270°C, is obtained from succinyl chloride and ammonia or by partial hydrolysis of succinonitrile. Heating succinknide with a primary amine gives A/-alkylsucckiknides (eq. 9). [Pg.536]

Suberic Acid. This acid is not produced commercially at this time. However, small quantities of high purity (98%) can be obtained from chemical supply houses. If a demand developed for suberic acid, the most economical method for its preparation would probably be based on one analogous to that developed for adipic and dodecanedioic acids air oxidation of cyclooctane to a mixture of cyclooctanone and cyclooctanol. This mixture is then further oxidized with nitric acid to give suberic acid (37). [Pg.62]

Seb cic Acid. Sebacic acid [111-20-6] C QH gO, is an important intermediate in the manufacture of polyamide resins (see Polyamides). It has an estimated demand worldwide of approximately 20,000 t/yr. The alkaline hydrolysis of castor oil (qv), which historically has shown some wide fluctuations in price, is the conventional method of preparation. Because of these price fluctuations, there have been years of considerable interest in an electrochemical route to sebacic acid based on adipic acid [124-04-9] (qv) as the starting material. The electrochemical step involves the Kolbn-type or Brown-Walker reaction where anodic coupling of the monomethyl ester of adipic acid forms dimethyl sebacate [106-79-6]. The three steps in the reaction sequence from adipic acid to sebacic acid are as follows ... [Pg.102]

This method with some slight modihcations is applied in the synthesis of to-bromo esters from Cs to Cn. Methyl 5-bromovalerate has been prepared by treating the silver salt of methyl hydrogen adipate with bromine. The ethyl ester has been prepared from the acid by esterification or through the acid chloride. ... [Pg.54]

Carbethoxycyclopentanone has been prepared from ethyl adipate by the action of sodium,sodamide, and sodium ethylate. The method in the above procedure is based upon the work of Cornubcrt and Borrel. ... [Pg.33]

It is possible to produce adipic acid by a variety of methods from such diverse starting points as benzene, acetylene and waste agricultural products. In practice, however, benzene is the favoured starting point and some of the more important routes for this material are illustrated in Figure 18.4... [Pg.480]

The types of equipment and the methods for designing the equipment are similar for both MEA and DEA systems. For other amine systems such as SNPA-DEA, Fluor Econamine (DGA), and Shell ADIP (DIPA) the licensee should be contacted for detailed design information. [Pg.185]

The epoxidation method developed by Noyori was subsequently applied to the direct formation of dicarboxylic acids from olefins [55], Cyclohexene was oxidized to adipic acid in 93% yield with the tungstate/ammonium bisulfate system and 4 equivalents of hydrogen peroxide. The selectivity problem associated with the Noyori method was circumvented to a certain degree by the improvements introduced by Jacobs and coworkers [56]. Additional amounts of (aminomethyl)phos-phonic acid and Na2W04 were introduced into the standard catalytic mixture, and the pH of the reaction media was adjusted to 4.2-5 with aqueous NaOH. These changes allowed for the formation of epoxides from ot-pinene, 1 -phenyl- 1-cyclohex-ene, and indene, with high levels of conversion and good selectivity (Scheme 6.3). [Pg.198]

Docosanedioic acid has been prepared by Wolff-Kishner reduction of 6,17-diketodocosanedioic acid, formed by reaction of the half-ester acid chloride of adipic acid with the a,co-cadmium derivative of decane (%26 overall yield).3 Reduction of Wolff-Kishner method, followed by simultaneous reduction and desulfurization with Raney nickel of the 2,5-bis(co-carboxyoctyl)thiophene pro-... [Pg.38]

In 1930, DuPont launched the synthetic fiber industry with the discovery of nylon-6,6.2 In 1938, a pilot plant for nylon-6,6 production was put into operation, and in 1939, production was commenced at a large-scale plant in Seaford, Delaware. The classical method for the synthesis of nylon-6,6 involves a two-step process. In the first step, hexamethylene diamine (HMDA) is reacted with adipic acid (AA) to form a nylon salt. Polymerization of the aqueous salt solution is carried out at temperatures in the range of about 210-275°C at a steam pressure of about 1.7 MPa. When 275°C is reached, the pressure is reduced to atmospheric pressure and heating is continued to drive the reaction to completion. [Pg.528]

Continuous polymerization processes, 167 Convergent method, 8 COOH-terminated poly(ethylene adipate), 95-96... [Pg.580]

In one approach cyclohexane is autoxidized to a mixture of cyclohexanol and cyclohexanone in the presence of a Co or Mn naphthenate catalyst. This mixture is subsequently oxidized to adipic acid using nitric acid as the oxidant in the presence of a Cu Vv catalyst. An alternative method using dioxygen in combination with Co or Mn in HOAc gives lower selectivities to adipic acid (70% vs 95%). Alternatively, autoxidation in the presence of stoichiometric amounts of boric acid produces cyclohexanol as the major product, which is subsequently oxidized to adipic acid using HNO3 in the presence of Cu Vv. The latter step produces substantial amounts of N2O as a waste product. [Pg.299]

A method for the depolymerisation of PETP fibres using quarternary ammonium salt phase transfer catalysts in saponification processes at atmospheric pressure and temperatures as low as room temperature is reported. Terephthalic acid was produced in yields as high as 93%. Also reported are similar processes for the depolymerisation of nylon 66 and nylon 46 fibres. Nylon 46 oligomers produced were repolymerised using solid-state polymerisation to produce high molecular weight nylon 46. Nylon 66 was depolymerised to produce oligomers and adipic acid in reasonable yields. 11 refs. USA... [Pg.52]

Two-step synthesis of sugar-containing polyesters by lipase CA catalyst was reported (Scheme 13)." Lipase CA catalyzed the condensation of sucrose with an excess of divinyl adipate to produce sucrose 6,6 -O-divinyl adipate, which was reacted with a,oo-alkylene diols by the same catalyst, yielding polyesters containing a sucrose unit in the main chain. This method conveniently affords... [Pg.223]

Prepare 26 g. of molecular sodium in a 1500 ml. round-bottomed flask (Section II,50,d, Method 1). Cover the sodium with 625 ml. of sodium-dried A.R. benzene fit the flask with an efficient reflux condenser protected from the air by means of a calcium chloride (or cotton wool) guard tube. Add 151 5 g. of diethyl adipate (Sections 111,99 and 111,100) in one lot, followed by 1 6 ml. of absolute ethyl alcohol. Warm the flask on a water bath until, after a few minutes, a vigorous reaction sets in and a cake of the sodio compound commences to separate. Keep the flask well shaken by hand during the whole of the initial reaction. After the spontaneous reaction has subsided, reflux the mixture on a water bath overnight, and then cool in ice. Decompose the product with ice and dilute hydrochloric acid (1 1) add the acid until Congo red paper is turned blue. Separate the benzene layer, and extract the aqueous layer with 100 ml. of benzene. Wash the combined extracts with 100 ml. of 5 per cent, sodium carbonate solution and 160 ml. of water dry over a KWe anhydrous magnesium sulphate. Remove the benzene under atmospheric pressure (Fig. II, 13, 4, but with modified Claisen flask), and fractionate the residue under reduced pressure. Collect the 2-carbethoxy-epelopentanone at 108-111°/15 mm. (96 g.). Upon redistillation, the product boils at 102°/H mm. [Pg.857]

SPE has been applied to phthalate esters (plasticisers in PVC), polar pesticides (agricultural usage) and for other continuous pollution monitoring problems and environmental analyses [272]. For these applications SPE has largely displaced LLE as the preferred technique for the preparation of liquid samples, e.g. EPA method 506 is concerned with the determination of phthalates and adipate esters in drinking water. [Pg.128]


See other pages where ADIP method is mentioned: [Pg.385]    [Pg.386]    [Pg.857]    [Pg.389]    [Pg.240]    [Pg.443]    [Pg.233]    [Pg.240]    [Pg.337]    [Pg.87]    [Pg.166]    [Pg.201]    [Pg.102]    [Pg.97]    [Pg.123]    [Pg.385]    [Pg.386]    [Pg.387]    [Pg.1205]    [Pg.333]    [Pg.466]   
See also in sourсe #XX -- [ Pg.213 ]




SEARCH



ADIPATE

© 2024 chempedia.info