Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acyclic diene

It is possible to prepare 1-acetoxy-4-chloro-2-alkenes from conjugated dienes with high selectivity. In the presence of stoichiometric amounts of LiOAc and LiCl, l-acetoxy-4-chloro-2-hutene (358) is obtained from butadiene[307], and cw-l-acetoxy-4-chloro-2-cyclohexene (360) is obtained from 1.3-cyclohexa-diene with 99% selectivity[308]. Neither the 1.4-dichloride nor 1.4-diacetate is formed. Good stereocontrol is also observed with acyclic diene.s[309]. The chloride and acetoxy groups have different reactivities. The Pd-catalyzed selective displacement of the chloride in 358 with diethylamine gives 359 without attacking allylic acetate, and the chloride in 360 is displaced with malonate with retention of the stereochemistry to give 361, while the uncatalyzed reaction affords the inversion product 362. [Pg.69]

Heteroannular and acyclic dienes usually display molar absorptivities in the 8000 to 20 000 range, whereas homoannular dienes are in the 5000 to 8000 range. [Pg.710]

Table 4. Effect of Cyclopentadiene—Acyclic Diene Codimers on DCPD-Based Thermal Polymerizations ... Table 4. Effect of Cyclopentadiene—Acyclic Diene Codimers on DCPD-Based Thermal Polymerizations ...
The stereochemistry of both chlorination and bromination of several cyclic and acyclic dienes has been determined. The results show that bromination is often stereo-specifically anti for the 1,2-addition process, whereas syn addition is preferred for 1,4-addition. Comparable results for chlorination show much less stereospeciftcity. It appears that chlorination proceeds primarily through ion-pair intermediates, whereas in bromina-hon a stereospecific anfi-l,2-addition may compete with a process involving a carbocation mtermediate. The latter can presumably give syn or anti product. [Pg.369]

In a definitive study of butadiene s reaction with l,l-dichloro-2,2-difluoio-ethylene, Bartlett concluded that [2+4] adducts of acyclic dienes with fluorinated ethylenes are formed through a mixture of concerted and nonconcerted, diradical pathways [67] The degree of observed [2+4] cycloaddition of fluorinated ethylenes IS related to the relative amounts of transoid and cisoid conformers of the diene, with very considerable (i.e., 30%) Diels-Alder adduct being observed in competition with [2+2] reaction, for example, in the reaction of 1,1 -dichloro-2,2-difluoro-ethylene with cyclopentadiene [9, 68]... [Pg.818]

Strained pertrifluoromethyl-substituted valence tautomers of aromatic systems, such as tetrakis(trifiuoromethyl)Dewar thiophene [87] and hexalas(tnfluorQ-methyl)benzvalene [Diels-Alder reactions with various cyclic and acyclic dienes (equations 76 and 77). [Pg.823]

Because the fluorine substituents both inductively and hyperconjugatively withdraw electron density from the C(2)-C(3) tt bond, the LUMO is located there, and Diels-Alder reactions take place exclusively with this bond [25] 1,1 -Difluoro allene and fluoroallene reaet readily with a large selection of cyclic and acyclic dienes, and acyclic dienes, [2+2] cycloadditions compete with the Diels-Alder processes As shown in the example in equation 79, a significantly different regiochemistry is observed for the [2+4] cycloaddition compared with the [2+2]... [Pg.824]

The 5-methylene-2(5//)-furanone 216 was found to be a good dienophile in Diels-Alder reactions with acyclic dienes (R = H, 2-Me, 2,3-di-Me, 1-Me, 1,3-di-Me). The reaction took place specifically at the cxo-cyclic double bond to give the corresponding spiro adducts 217 in good yields (Scheme 59) (90JOC3060). [Pg.144]

Less reactive dienes such as cyclohexadiene can be employed efficiently, giving the adduct in 90% yield in 93% ee. Acyclic dienes such as piperylene, 2,4-hexadiene, and 1-phenylbutadiene also react with the acryloyloxazolidinone derivative to afford Diels-Alder cycloadducts in high optical yields (Scheme 1.38, Table 1.17). [Pg.28]

For the construction of oxygen-functionalized Diels-Alder products, Narasaka and coworkers employed the 3-borylpropenoic acid derivative in place of 3-(3-acet-oxypropenoyl)oxazolidinone, which is a poor dienophile in the chiral titanium-catalyzed reaction (Scheme 1.55, Table 1.24). 3-(3-Borylpropenoyl)oxazolidinones react smoothly with acyclic dienes to give the cycloadducts in high optical purity [43]. The boryl group was converted to an hydroxyl group stereospecifically by oxidation, and the alcohol obtained was used as the key intermediate in a total synthesis of (-i-)-paniculide A [44] (Scheme 1.56). [Pg.36]

Another metathesis polymerization procedure uses terminal dienes such as hexa-1,5-diene (16) (acyclic diene metathesis (ADMET)). Here again, the escape of the gaseous reaction product, i.e. ethylene, ensures the irreversible progress of the reaction ... [Pg.13]

Acyclic diene molecules are capable of undergoing intramolecular and intermolec-ular reactions in the presence of certain transition metal catalysts molybdenum alkylidene and ruthenium carbene complexes, for example [50, 51]. The intramolecular reaction, called ring-closing olefin metathesis (RCM), affords cyclic compounds, while the intermolecular reaction, called acyclic diene metathesis (ADMET) polymerization, provides oligomers and polymers. Alteration of the dilution of the reaction mixture can to some extent control the intrinsic competition between RCM and ADMET. [Pg.328]

Giirtler and Jautelat of Bayer AG have protected methods that use chloroalumi-nate(III) ionic liquids as solvents for both cyclization and polymerization reactions of acyclic dienes [52]. They employed the neutral ionic liquid [EMIM][G1-A1G13]... [Pg.328]

Figure 7.4-2 Acyclic diene metathesis polymerization (ADMET) reaction carried out in the... Figure 7.4-2 Acyclic diene metathesis polymerization (ADMET) reaction carried out in the...
X(A1C13) = 0.5) to immobilize a ruthenium carbene complex for biphasic ADMET polymerization of an acyclic diene ester (Figure 7.4-2). The reaction is an equilibrium processes, and so removal of ethylene drives the equilibrium towards the products. The reaction proceeds readily at ambient temperatures, producing mostly polymeric materials but also 10 % dimeric material. [Pg.329]

As stated above, olefin metathesis is in principle reversible, because all steps of the catalytic cycle are reversible. In preparatively useful transformations, the equilibrium is shifted to one side. This is most commonly achieved by removal of a volatile alkene, mostly ethene, from the reaction mixture. An obvious and well-established way to classify olefin metathesis reactions is depicted in Scheme 2. Depending on the structure of the olefin, metathesis may occur either inter- or intramolecularly. Intermolecular metathesis of two alkenes is called cross metathesis (CM) (if the two alkenes are identical, as in the case of the Phillips triolefin process, the term self metathesis is sometimes used). The intermolecular metathesis of an a,co-diene leads to polymeric structures and ethene this mode of metathesis is called acyclic diene metathesis (ADMET). Intramolecular metathesis of these substrates gives cycloalkenes and ethene (ring-closing metathesis, RCM) the reverse reaction is the cleavage of a cyclo-... [Pg.225]

Scheme 2 Different modes of the olefin metathesis reaction cross metathesis (CM), ringclosing metathesis (RCM), ring-opening metathesis (ROM), acyclic diene metathesis polymerization (ADMET), and ring-opening metathesis polymerization (ROMP)... Scheme 2 Different modes of the olefin metathesis reaction cross metathesis (CM), ringclosing metathesis (RCM), ring-opening metathesis (ROM), acyclic diene metathesis polymerization (ADMET), and ring-opening metathesis polymerization (ROMP)...
Alkyne cross metathesis Acyclic diene metathesis Asymmetric ring-closing metathesis Asymmetric ring-opening metathesis Cross metathesis... [Pg.270]

Nearly all of the polymers produced by step-growth polymerization contain heteroatoms and/or aromatic rings in the backbone. One exception is polymers produced from acyclic diene metathesis (ADMET) polymerization.22 Hydrocarbon polymers with carbon-carbon double bonds are readily produced using ADMET polymerization techniques. Polyesters, polycarbonates, polyamides, and polyurethanes can be produced from aliphatic monomers with appropriate functional groups (Fig. 1.1). In these aliphatic polymers, the concentration of the linking groups (ester, carbonate, amide, or urethane) in the backbone greatly influences the physical properties. [Pg.4]

Olefin metathesis, an expression coined by Calderon in 1967,1 has been accurately described in Ivin and Mol s seminal text Olefin Metathesis and Metathesis Polymerization as the (apparent) interchange of carbon atoms between a pair of double bonds (ref. 2, p. 1). This remarkable conversion can be divided into three types of reactions, as illustrated in Fig. 8.1. These reactions have been used extensively in the synthesis of a broad range of both macromolecules and small molecules3 this chapter focuses on acyclic diene metathesis (ADMET) polymerization as a versatile route for the production of a wide range of functionalized polymers. [Pg.431]

Figure 8.6 General acyclic diene metathesis catalytic cycle. Figure 8.6 General acyclic diene metathesis catalytic cycle.
K. B. Wagener, Acyclic Diene Metathesis (ADMET) Polymerization, in Synthesis of Polymers, A. D. Schluter (Ed.), Materials Science and Technology Series, Wiley, Weinheim, 1999. [Pg.462]

Acyclic dienes, 433 Acylation, Friedel-Crafts, 329 A-Acylimidazoles, 78 Acyloxyphosphonium salts, 79 Adamantane, 354... [Pg.575]

ADMET polymerization. See Acyclic diene metathesis (ADMET) polymerization... [Pg.576]

Two-shot techniques for acyclic diene metathesis, 435-445 for polyamides, 149-164 for polyimides, 287-300 for polyurethanes, 241-246 for transition metal coupling, 483-490 Anionic deactivation, 360 Anionic polymerization, 149, 174 of lactam, 177-178 Apolar solvents, 90 Aprotic polar solvents, 185, 338 Aprotic solvents, low-temperature condensation in, 302 Aqueous coating formulations, 235 Aqueous polyoxymethylene glycol, depolymerization of, 377 Aqueous systems, 206 Ardel, 20, 22... [Pg.577]

Wefero-Dlels-Alder reactions of 3,5-di-fe/-f-butyl-o-benzoquinone with acyclic dienes novel synthesis of 1,4-benzodioxanes [135]... [Pg.83]

A strong dependence of the diastereofacial selectivity [18] on the substituents has been observed in the catalyzed cycloadditions of acyclic dienes with... [Pg.102]

Ferrocenium hexafluorophosphate (48) and catecholboronbromide (49) (Figure 3.6) are efficient catalysts that have been tested in the cycloadditions of cyclic and acyclic dienes with a variety of dienophiles [48]. Catalyst 48 is less active than 49, but is less corrosive. [Pg.114]

Binaphthol-derived titanium complexes [64], prepared from chiral ligands 65 (Figure 3.13), also performed very well in the cycloadditions of conjugated aldehydes with cyclic and acyclic dienes. Judging from the absolute configurations of endo and exo adducts, this catalyst should cover the re-face of carbonyl on its u tz-coordination to s-trans a,/l-unsaturated aldehydes, and hence dienes should approach selectively from the si-face. [Pg.120]


See other pages where Acyclic diene is mentioned: [Pg.147]    [Pg.147]    [Pg.355]    [Pg.630]    [Pg.744]    [Pg.777]    [Pg.254]    [Pg.332]    [Pg.13]    [Pg.96]    [Pg.229]    [Pg.322]    [Pg.432]    [Pg.433]    [Pg.461]    [Pg.575]    [Pg.579]    [Pg.617]    [Pg.36]    [Pg.168]    [Pg.1147]   
See also in sourсe #XX -- [ Pg.31 ]

See also in sourсe #XX -- [ Pg.83 , Pg.92 , Pg.121 ]




SEARCH



ADMET Acyclic diene metathesis

Acyclic 1,3-dienes, Diels-Alder reactions

Acyclic Diene Stereochemistry

Acyclic Dienes as Cyclization Precursors

Acyclic Dienes with Heteroatoms

Acyclic carbohydrate-derived dienes

Acyclic diene metathesi

Acyclic diene metathesis

Acyclic diene metathesis copolymers

Acyclic diene metathesis mechanism

Acyclic diene metathesis modeling

Acyclic diene metathesis oligomers

Acyclic diene metathesis polyethylenes

Acyclic diene metathesis polymerisation

Acyclic diene metathesis polymerisation ADMET)

Acyclic diene metathesis polymerization

Acyclic diene metathesis polymerization ADMET)

Acyclic diene metathesis polymerization polymers

Acyclic diene metathesis polymers

Acyclic diene metathesis reaction

Acyclic diene polymerization

Acyclic functionalized dienes

Catalysis in Acyclic Diene Metathesis (ADMET) Polymerization

Catalysts Acyclic diene metathesis catalyst

Conjugated acyclic dienes

Conjugated diene complexes acyclic

Cyclization precursors acyclic dienes

Diels-Alder reaction with acyclic dienes

Diene acyclic chiral

Diene acyclic dendralenes

Diene-iron carbonyl complexes acyclic dienes

Dienes acyclic

Dienes acyclic

Dienes, acyclic intermolecular metathesis

Dienes, acyclic intramolecular metathesis

Dienes, acyclic, polymerization

Metathesis, of acyclic dienes

Olefin metathesis acyclic diene

Step-growth acyclic diene metathesis

Step-growth acyclic diene metathesis ADMET) polymerization

Step-growth polymerization acyclic diene metathesis

Substituted Acyclic Conjugated Dienes

Synthesis with acyclic dienes

© 2024 chempedia.info