Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclic Double Bonds

Double bonds, cyclic structures, and especially aromatic (or heteroaromatic) rings stabilize the molecular ion and thus increase the probability of its appearance. [Pg.13]

Cyclic compounds are ring compounds that have no double bonds. Cyclic alcohols have at least one OH attached to the ring. The OH here is not acidic and can behave like a usual OH alcohol (Figure 3.6). [Pg.50]

II Double bond, cyclic structure Polymerize with moderate hydrogen production and moderate photon emission Moderate level of dangling bonds and unsaturation... [Pg.118]

Another very specific subtractive naming mode has been developed for cyclic compounds containing (if only formal) contiguous double bonds -cyclic cumulenes - whose treatment with conventional nomenclatural means would often lead to rather cumbersome combinations of ene , dehydro , and indicated H notations. [Pg.90]

There also exist natural fatty acids with four or more double bonds, fatty acids with hydroxy groups in the molecule, and certain cyclic fatty acids. [Pg.173]

The napthanes (C H2n), or cycloalkanes, are ring or cyclic saturated structures, such as cyclo-hexane (CgH 2) though rings of other sizes are also possible. An important series of cyclic structures is the arenes (or aromatics, so called because of their commonly fragrant odours), which contain carbon-carbon double bonds and are based on the benzene molecule. [Pg.92]

One extra disconnection is all we need to cope with misaturated heterocycles. If a nitrogen atom is joined to a double bond in a ring, we have a cyclic enamine. This is made from an amine and a carbonyl compound in the same way as ordinary enamines ... [Pg.81]

Treatment of geminal dihalocyclopropyl compounds with a strong base such as butyl lithium has been for several years the most versatile method for cumulenes. The dihalo compounds are easily obtained by addition of dihalocarbenes to double--bond systems If the dihalocyclopropanes are reacted at low temperatures with alkyllithium, a cyclopropane carbenoid is formed, which in general decomposes above -40 to -50°C to afford the cumulene. Although at present a number of alternative methods are available , the above-mentioned synthesis is the only suitable one for cyclic cumulenes [e.g. 1,2-cyclononadiene and 1,2,3-cyclodecatriene] and substituted non-cyclic cumulenes [e.g. (CH3)2C=C=C=C(CH3)2]. [Pg.117]

The addition of large enolate synthons to cyclohexenone derivatives via Michael addition leads to equatorial substitution. If the cyclohexenone conformation is fixed, e.g. as in decalones or steroids, the addition is highly stereoselective. This is also the case with the S-addition to conjugated dienones (Y. Abe, 1956). Large substituents at C-4 of cyclic a -synthons direct incoming carbanions to the /rans-position at C-3 (A.R. Battersby, 1960). The thermodynamically most stable products are formed in these cases, because the addition of 1,3-dioxo compounds to activated double bonds is essentially reversible. [Pg.72]

Regioselectivity of C—C double bond formation can also be achieved in the reductiv or oxidative elimination of two functional groups from adjacent carbon atoms. Well estab llshed methods in synthesis include the reductive cleavage of cyclic thionocarbonates derivec from glycols (E.J. Corey, 1968 C W. Hartmann, 1972), the reduction of epoxides with Zn/Nal or of dihalides with metals, organometallic compounds, or Nal/acetone (seep.lS6f), and the oxidative decarboxylation of 1,2-dicarboxylic acids (C.A. Grob, 1958 S. Masamune, 1966 R.A. Sheldon, 1972) or their r-butyl peresters (E.N. Cain, 1969). [Pg.142]

The oxidation of simple internal alkenes is very slow. The clean selectiv oxidation of a terminal double bond in 40, even in the presence of an internt double bond, is possible under normal conditions[89,90]. The oxidation c cyclic alkenes is difficult, but can be carried out under selected condition Addition of strong mineral acids such as HCIO4, H2S04 and HBF4 accelerate the oxidation of cyclohexene and cyclopentene[48,91], A catalyst system 0 PdSO4-H3PM06W6Oii(j [92] or PdCF-CuCF m EtOH is used for the oxidatioi of cyclopentene and cyclohexene[93]. [Pg.28]

The oxidation of the cyclic enol ether 93 in MeOH affords the methyl ester 95 by hydrolysis of the ketene acetal 94 formed initially by regioselective attack of the methoxy group at the anomeric carbon, rather than the a-alkoxy ketone[35]. Similarly, the double bond of the furan part in khellin (96) is converted ino the ester 98 via the ketene acetal 97[l23],... [Pg.34]

Cyclic alkenes give different regioisomers depending on the reaction conditions owing to double bond isomerization caused by syii elimination of Pd—H species and its readdition. The following three reaction conditions were tested for the reaction of cycloheptene (35)[18,38] ... [Pg.133]

Various terminal allylic compounds are converted into l-alkenes at room temperature[362]. Regioselective hydrogenolysis with formate is used for the formation of an exo-methylene group from cyclic allylic compounds by the formal anti thermodynamic isomerization of internal double bonds to the exocyclic position[380]. Selective conversion of myrtenyl formate (579) into /9-pinene is an example. The allylic sulfone 580 and the allylic nitro compound... [Pg.368]

The 3.8-nonadienoate 91, obtained by dimerization-carbonylation, has been converted into several natural products. The synthesis of brevicomin is described in Chapter 3, Section 2.3. Another royal jelly acid [2-decenedioic acid (149)] was prepared by cobalt carbonyl-catalyzed carbonylation of the terminal double bond, followed by isomerization of the double bond to the conjugated position to afford 149[122], Hexadecane-2,15-dione (150) can be prepared by Pd-catalyzed oxidation of the terminal double bond, hydrogenation of the internal double bond, and coupling by Kolbe electrolysis. Aldol condensation mediated by an organoaluminum reagent gave the unsaturated cyclic ketone 151 in 65% yield. Finally, the reduction of 151 afforded muscone (152)[123]. n-Octanol is produced commercially as described beforc[32]. [Pg.445]

You have just seen that cyclic halonmm ion intermediates are formed when sources of electrophilic halogen attack a double bond Likewise three membered oxygen containing rings are formed by the reaction of alkenes with sources of electrophilic oxygen... [Pg.260]

Hydrocarbons that contain a carbon-carbon triple bond are called alkynes Non cyclic alkynes have the molecular formula C H2 -2 Acetylene (HC=CH) is the simplest alkyne We call compounds that have their triple bond at the end of a carbon chain (RC=CH) monosubstituted or terminal alkynes Disubstituted alkynes (RC=CR ) have internal triple bonds You will see m this chapter that a carbon-carbon triple bond is a functional group reacting with many of the same reagents that react with the double bonds of alkenes... [Pg.363]

The pattern of orbital energies is different for benzene than it would be if the six tt electrons were confined to three noninteracting double bonds The delocalization provided by cyclic conjugation in benzene causes its tt electrons to be held more strongly than they would be in the absence of cyclic conjugation Stronger binding of its tt electrons is the factor most responsible for the special stability—the aromaticity—of benzene... [Pg.431]


See other pages where Cyclic Double Bonds is mentioned: [Pg.3]    [Pg.236]    [Pg.3]    [Pg.46]    [Pg.267]    [Pg.268]    [Pg.110]    [Pg.254]    [Pg.281]    [Pg.162]    [Pg.238]    [Pg.257]    [Pg.588]    [Pg.14]    [Pg.3]    [Pg.236]    [Pg.3]    [Pg.46]    [Pg.267]    [Pg.268]    [Pg.110]    [Pg.254]    [Pg.281]    [Pg.162]    [Pg.238]    [Pg.257]    [Pg.588]    [Pg.14]    [Pg.20]    [Pg.121]    [Pg.208]    [Pg.5]    [Pg.98]    [Pg.92]    [Pg.105]    [Pg.128]    [Pg.130]    [Pg.38]    [Pg.48]    [Pg.200]    [Pg.311]    [Pg.349]    [Pg.99]   
See also in sourсe #XX -- [ Pg.39 ]




SEARCH



Cyclic alkenes double-bond migration

Cyclic bonding

Terminal methyls, 24 cyclic double bonds

© 2024 chempedia.info