Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acyclic diene metathesis reaction

Note that the acyclic diene metathesis reaction [scheme (22)] and the ringclosing metathesis reaction [scheme (23)] are inter- and intramolecular displays of the same mechanistic event [1] ... [Pg.405]

In the ring-closing metathesis reaction, intramolecular metathesis closes a ring to form a small cyclic molecule with concurrent loss of a small molecule (ethylene). Conversely, in the case of the acyclic diene metathesis reaction, macromolecules are formed by successive intermolecular condensation of two olefinic molecules [1],... [Pg.405]

To date there are only a few examples of polymers having a disilandiyl-carbon backbone, but they could not be synthesized by an olefin-metathesis process with Grubbs catalyst [4 - 6]. The aim of our work is to investigate the catalytic activity of the ruthenium-carbene complex RuCl2(PCy3)2(=CHPh) (Grubbs catalyst) in acyclic diene metathesis reactions of different unsaturated organodisilanes. [Pg.547]

Another metathesis polymerization procedure uses terminal dienes such as hexa-1,5-diene (16) (acyclic diene metathesis (ADMET)). Here again, the escape of the gaseous reaction product, i.e. ethylene, ensures the irreversible progress of the reaction ... [Pg.13]

Acyclic diene molecules are capable of undergoing intramolecular and intermolec-ular reactions in the presence of certain transition metal catalysts molybdenum alkylidene and ruthenium carbene complexes, for example [50, 51]. The intramolecular reaction, called ring-closing olefin metathesis (RCM), affords cyclic compounds, while the intermolecular reaction, called acyclic diene metathesis (ADMET) polymerization, provides oligomers and polymers. Alteration of the dilution of the reaction mixture can to some extent control the intrinsic competition between RCM and ADMET. [Pg.328]

Figure 7.4-2 Acyclic diene metathesis polymerization (ADMET) reaction carried out in the... Figure 7.4-2 Acyclic diene metathesis polymerization (ADMET) reaction carried out in the...
As stated above, olefin metathesis is in principle reversible, because all steps of the catalytic cycle are reversible. In preparatively useful transformations, the equilibrium is shifted to one side. This is most commonly achieved by removal of a volatile alkene, mostly ethene, from the reaction mixture. An obvious and well-established way to classify olefin metathesis reactions is depicted in Scheme 2. Depending on the structure of the olefin, metathesis may occur either inter- or intramolecularly. Intermolecular metathesis of two alkenes is called cross metathesis (CM) (if the two alkenes are identical, as in the case of the Phillips triolefin process, the term self metathesis is sometimes used). The intermolecular metathesis of an a,co-diene leads to polymeric structures and ethene this mode of metathesis is called acyclic diene metathesis (ADMET). Intramolecular metathesis of these substrates gives cycloalkenes and ethene (ring-closing metathesis, RCM) the reverse reaction is the cleavage of a cyclo-... [Pg.225]

Scheme 2 Different modes of the olefin metathesis reaction cross metathesis (CM), ringclosing metathesis (RCM), ring-opening metathesis (ROM), acyclic diene metathesis polymerization (ADMET), and ring-opening metathesis polymerization (ROMP)... Scheme 2 Different modes of the olefin metathesis reaction cross metathesis (CM), ringclosing metathesis (RCM), ring-opening metathesis (ROM), acyclic diene metathesis polymerization (ADMET), and ring-opening metathesis polymerization (ROMP)...
Olefin metathesis, an expression coined by Calderon in 1967,1 has been accurately described in Ivin and Mol s seminal text Olefin Metathesis and Metathesis Polymerization as the (apparent) interchange of carbon atoms between a pair of double bonds (ref. 2, p. 1). This remarkable conversion can be divided into three types of reactions, as illustrated in Fig. 8.1. These reactions have been used extensively in the synthesis of a broad range of both macromolecules and small molecules3 this chapter focuses on acyclic diene metathesis (ADMET) polymerization as a versatile route for the production of a wide range of functionalized polymers. [Pg.431]

Acyclic diene metathesis (ADMET) is a step-growth polycondensation reaction for the polymerization of o -dienes 729 The process is catalyzed by the same metal alkylidene initiators used for ROMP, and is driven by the removal of ethylene from the system (Scheme 13). Both molybdenum and ruthenium-based initiators have been used to prepare a variety of materials including functionalized polyethy-... [Pg.36]

The report by Basset and co-workers on the metathesis of sulphur-containing alkenes using a tungsten alkylidene complex, mentioned previously for the acyclic cross-metathesis reaction (see Sect. 2.2), also contained early examples of ring-opening cross-metathesis of functionalised alkenes [20]. Allyl methyl sulphide was reacted with norbornene in the presence of the tungsten catalyst 5, to yield the desired ring-opened diene 35 (Eq. 29). [Pg.182]

Acyclic diene metathesis polymerization (ADMET) is a related polymerization in which an unconjugated diene polymerizes with loss of ethene [Lehman and Wagener, 2002, 2003 Schwendeman et al., 2002], ADMET is carried out using the Schrock and Gmbbs initiators at about 40-80°C. The process is a step polymerization, not a ROP chain reaction. The reaction is reversible, and high polymer MW is achieved by removal of ethene (usually by reduced... [Pg.592]

SCHEME 1. Types of alkene and alkyne metathesis reactions. DBC, double bond cleavage TBC, triple bond cleavage ADMET, acyclic diene metathesis RCM ring-closing metathesis ROMP ring-opening metathesis polymerization... [Pg.1501]

Dienes are cyclized by intramolecular metathesis. In particular, cyclic alkenes 43 and ethylene are formed by the ring-closing metathesis of the a,co-diene 46. This is the reverse reaction of ethenolysis. Alkene metathesis is reversible, and usually an equilibrium mixture of alkenes is formed. However, the metathesis of a,co-dienes 46 generates ethylene as one product, which can be removed easily from reaction mixtures to afford cyclic compounds 43 nearly quantitatively. This is a most useful reaction, because from not only five to eight membered rings, but also macrocycles can be prepared by RCM under high-dilution conditions. However, it should be noted that RCM is an intramolecular reaction and competitive with acyclic diene metathesis polymerization (ADMET), which is intermolecular to form the polymer 47. In addition, the polymer 47 may be formed by ROMP of the cyclic compounds 43. [Pg.312]

This intramolecular reaction results in the formation of a cyclic system, and therefore it is called ring-closing metathesis (RCM). In this process a diene 36 is treated with a metal alkylidene 37. Two competing pathways are available via the intermediate metal alkylidene 38 A) RCM will occur to afford cyclic adducts 39 and B) intermolecular reaction can occur to form polymeric structures 40 (acyclic diene metathesis polymerization (ADMET)). The reaction is also complicated because of the possibility of ring-opening metathesis (ROM), the retro reaction of path A, and ring opening metathesis polymerization (ROMP) (path C).13... [Pg.145]

Let us emphasise that the driving force for acyclic diene metathesis, which is a step-growth condensation polymerisation, is the release and removal of a small condensate molecule. The polycondensation is performed preferably under bulk conditions (no solvent used), since acyclic diene metathesis is thermally neutral and there is no need to remove the heat of the reaction, in contrast to exothermic cyclic olefin ring-opening metathesis polymerisation. [Pg.401]

Metathetical polycondensation of acyclic dienes has not been successful with conventional catalysts used for the ring-opening metathesis polymerisation of cycloolefins, which is due to the fact that Lewis acids are usually present, and produce deleterious side reactions [13,16,17]. Only Lewis acid-free, well-defined catalysts have been successfully applied for acyclic diene metathesis polycondensation the key success has been to choose catalysts that obviate other pathways not involving the metathesis mechanism [18-20]. It was Wagener et al. [16,21] who first were able to convert an acyclic a, co-diene (1,9-decadiene), by using an acid-free metal alkylidene catalyst, to a high molecular weight... [Pg.401]

Lewis acid-free catalysts for acyclic diene metathesis obviate the formation of carbocations, which in turn completely eliminates competing reactions, mostly involving cationic oligomerisation via 1-alkene bonds. Thus, metathesis polycondensation occurs quantitatively to yield high molecular weight poly(l-alke-nylenejs with vinyl end groups and ethylene as a byproduct. [Pg.402]

The ruthenium-based catalyst provided by Grubbs et al. [19] also promotes acyclic diene metathesis polycondensation, although with higher concentrations being required to achieve reasonable reaction rates [24,25] ... [Pg.402]

Telechelic dienes for metathesis polycondensation, containing functional groups such as those in alcohols, esters, carboxylic acids and imides, can be obtained via acyclic diene metathesis depolymerisation [64,65]. They can then be used in further reactions to create hydrophobic polyurethanes and other special-purpose polymers [1]. [Pg.408]

Thanks to the development of the Grubbs benzylidene catalyst (2) and other related ruthenium complexes, olefin metathesis has experienced spectacular advances over the past 10 years. The various incarnations of the reaction (acyclic diene metathesis, ring-closing metathesis, ring-opening metathesis polymerization, etc.) have now acquired first rank importance in synthesis. Clearly, the emergence of a similar, generic, efficient catalytic system for con-... [Pg.169]

A new acyclic diene metathesis polymerization method has been developed using 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene)benzylidene mthenium(II) dichloride as catalyst. This reaction catalyst was used for preparing oligomers and polymers containing amino acids or polypeptides. [Pg.481]

Unsaturated polymers can be produced by means of ring-opening metathesis polymerization (ROMP) of cyclic alkenes. These unique polymers can also be produced via intermolecular Acyclic Diene Metathesis (ADMET). Dienes can also react intramolecularly via Ring Closing Metathesis (RCM) to afford cyclic products. RCM is often applied to synthesis of compounds for fine chemical and pharmaceutical application. Generic examples of these reactions are shown in Figure 2. [Pg.202]


See other pages where Acyclic diene metathesis reaction is mentioned: [Pg.1576]    [Pg.539]    [Pg.1576]    [Pg.451]    [Pg.1576]    [Pg.539]    [Pg.1576]    [Pg.451]    [Pg.13]    [Pg.322]    [Pg.461]    [Pg.575]    [Pg.207]    [Pg.82]    [Pg.53]    [Pg.191]    [Pg.192]    [Pg.205]    [Pg.1522]    [Pg.315]    [Pg.403]    [Pg.406]    [Pg.312]    [Pg.26]    [Pg.3]    [Pg.90]    [Pg.3980]   


SEARCH



Acyclic diene

Acyclic diene metathesi

Acyclic diene metathesis

Acyclic metathesis

Diene metathesis

Diene metathesis reaction

Diene reaction

Dienes acyclic

Dienes metathesis

Dienes, reactions

Metathesis reactions

Metathesis reactions reaction

© 2024 chempedia.info