Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acrylates Specifications

Furan also undergoes cycloadditions with allenes and even with simpler dienophiles, like acrylonitrile and acrylate (specifically enhanced by the presence of... [Pg.303]

Furan also undergoes cycloadditions with allenes and even with simpler dienophiles, like acrylonitrile and acrylate (specifically enhanced by the presence of zinc iodide),and with maleate and fumarate esters, if the addition is conducted under high pressure. This device can also be used to increase markedly the reactivity of 2-methoxy- and 2-acetoxyfuran towards dienophiles. Lewis acid catalysis can also been used to accelerate furan Diels-Alder additions. At higher reaction temperatures alkynes and even electron-rich alkenes will add to furan. [Pg.286]

Manufacture Various methods for the manufacture of acrylates are summarized in Figure 1, showing thek dependence on specific raw materials. For a route to be commercially attractive, the raw material costs and utilization must be low, plant investment and operating costs not excessive, and waste disposal charges minimal. [Pg.151]

Acrylate CAS Registry Number Molecular weight bp, glcirr Flash poiat. Water solubihty, g/100gH2O Heat of evaporatioa, Vi Specific heat, J/g-K ... [Pg.164]

The combination of durability and clarity and the ability to tailor molecules relatively easily to specific applications have made acryflc esters prime candidates for numerous and diverse applications. At normal temperatures the polyacrylates are soft polymers and therefore tend to find use in applications that require flexibility or extensibility. However, the ease of copolymerizing the softer acrylates with the harder methacrylates, styrene, acrylonitrile, and vinyl acetate, allows the manufacture of products that range from soft mbbers to hard nonfilm-forming polymers. [Pg.171]

Carbon and Graphite Fibers. Carbon and graphite fibers (qv) are valued for their unique combination of extremely high modulus and very low specific gravity. Acrylic precursors are made by standard spinning conditions, except that increased stretch orientation is required to produce precursors with higher tenacity and modulus. The first commercially feasible process was developed at the Royal Aircraft Fstablishment (RAF) in collaboration with the acrylic fiber producer, Courtaulds (88). In the RAF process the acrylic precursor is converted to carbon fiber in a two-step process. The use of PAN as a carbon fiber precursor has been reviewed (89,90). [Pg.285]

Unlike most crystalline polymers, PVDF exhibits thermodynamic compatibiUty with other polymers (133). Blends of PVDF and poly(methyl methacrylate) (PMMA) are compatible over a wide range of blend composition (134,135). SoHd-state nmr studies showed that isotactic PMMA is more miscible with PVDF than atactic and syndiotactic PMMA (136). MiscibiUty of PVDF and poly(alkyl acrylates) depends on a specific interaction between PVDF and oxygen within the acrylate and the effect of this interaction is diminished as the hydrocarbon content of the ester is increased (137). Strong dipolar interactions are important to achieve miscibility with poly(vinyhdene fluoride) (138). PVDF blends are the object of many papers and patents specific blends of PVDF and acryflc copolymers have seen large commercial use. [Pg.387]

Process. Any standard precursor material can be used, but the preferred material is wet spun Courtaulds special acrylic fiber (SAF), oxidized by RK Carbon Fibers Co. to form 6K Panox B oxidized polyacrylonitrile (PAN) fiber (OPF). This OPF is treated ia a nitrogen atmosphere at 450—750°C, preferably 525—595°C, to give fibers having between 69—70% C, 19% N density less than 2.5 g/mL and a specific resistivity under 10 ° ohm-cm. If crimp is desired, the fibers are first knit iato a sock before heat treating and then de-knit. Controlled carbonization of precursor filaments results ia a linear Dow fiber (LDF), whereas controlled carbonization of knit precursor fibers results ia a curly carbonaceous fiber (EDF). At higher carbonizing temperatures of 1000—1400°C the fibers become electrically conductive (22). [Pg.69]

Specifically MSA has been found to be more effective than -toluenesulfonic acid and sulfuric acid in preparing dioctyl phthalate (405). A U.S. patent also discloses its use to prepare light-colored fatty esters (406). It is also important as a catalyst to prepare acrylates, methacrylates, adipates, phthalates, trimeUitates, thioglycolates, and other esters. [Pg.154]

The most effective and widely used dispersants are low molecular weight anionic polymers. Dispersion technology has advanced to the point at which polymers are designed for specific classes of foulants or for a broad spectmm of materials. Acrylate-based polymers are widely used as dispersants. They have advanced from simple homopolymers of acryflc acid to more advanced copolymers and terpolymers. The performance characteristics of the acrylate polymers are a function of their molecular weight and stmcture, along with the types of monomeric units incorporated into the polymer backbone. [Pg.271]

The most commonly used polymers are cellulose acetate phthalate [9004-38-0] (CAP), poly(vinyl acetate phthalate) [34481-48-6] (PVAP), hydroxypropylmethyl-ceUulosephthalate [71138-97-1] (HPMCP), and polymethacrylates (111) (see Cellulose esters). Acrylate copolymers are also available (112). Eigure 11 shows the dissolution behavior of some commercially available enteric materials. Some manufacturers supply grades designed to dissolve at specific pH values with increments as small as 0.5 pH unit (113). [Pg.148]

Two kinds of monomers are present in acryUc elastomers backbone monomers and cure-site monomers. Backbone monomers are acryUc esters that constitute the majority of the polymer chain (up to 99%), and determine the physical and chemical properties of the polymer and the performance of the vulcanizates. Cure-site monomers simultaneously present a double bond available for polymerization with acrylates and a moiety reactive with specific compounds in order to faciUtate the vulcanization process. [Pg.474]

Commercial Forms. Eour different base polymers of VAMAC ethylene—acryhc elastomer are commercially available (Table 1). Until 1990, existing grades of ethylene—acryhc elastomers were based on a single-gum polymer. VAMAC G, defined as a terpolymer of 55% methyl acrylate, ethylene, and a cure-site monomer (5). In 1991, a higher methyl acrylate terpolymer, VAMAC LS, was introduced. The composition of this polymer was specifically chosen because it significantly increases the oil resistance of the polymer while minimizing losses in low temperature fiexibihty (6). [Pg.498]

The successful development of eye contact lenses led in turn to a demand for soft contact lenses. Such a demand was eventually met by the preparation of copolymers using a combination of an acrylic ester monomer such as methyl methacrylate, a cross-linkable monomer such as a dimethacrylate, and a monomer whose homopolymer is soluble or highly swollen in water such as N-vinyl pyrrolidone. Such copolymers swell in water (hence the term hydrophilic), the degree of swelling being controlled by the specific type and amount of the monomers used. In use the lens is swollen to equilibrium in water, a typical soft lens having a water content of about 75%. [Pg.420]

There are probably several factors which contribute to determining the endo exo ratio in any specific case. These include steric effects, dipole-dipole interactions, and London dispersion forces. MO interpretations emphasize secondary orbital interactions between the It orbitals on the dienophile substituent(s) and the developing 7t bond between C-2 and C-3 of the diene. There are quite a few exceptions to the Alder rule, and in most cases the preference for the endo isomer is relatively modest. For example, whereas cyclopentadiene reacts with methyl acrylate in decalin solution to give mainly the endo adduct (75%), the ratio is solvent-sensitive and ranges up to 90% endo in methanol. When a methyl substituent is added to the dienophile (methyl methacrylate), the exo product predominates. ... [Pg.638]

Specialty waxes include polar waxes for more polar adhesive systems. Examples would be castor wax (triglyceride of 12-hydroxy stearic acid) or Paracin wax N- 2 hydroxy ethyl)-12-hydroxy stearamide) which are used in polyester, polyamide, or with high VA EVA copolymer-based systems. Other common polar waxes are maleated polyethylenes, which are used to improve the specific adhesion of polyethylene-based adhesives, and low molecular weight ethylene copolymers with vinyl acetate or acrylic acid, which are used to improve low temperature adhesion. High melting point isotactic polypropylene wax (7 155°C) and highly refined paraffin wax (7,n 83°C) are used where maximum heat resistance is critical. Needless to say, these specialty waxes also command a premium price, ranging from 2 to 5 times that of conventional paraffin wax. [Pg.727]

At low strains there is an elastic region whereas at high strains there is a nonlinear relationship between stress and strain and there is a permanent element to the strain. In the absence of any specific information for a particular plastic, design strains should normally be limited to 1%. Lower values ( 0.5%) are recommended for the more brittle thermoplastics such as acrylic, polystyrene and values of 0.2-0.3% should be used for thermosets. [Pg.19]

The modulus term in this equation can be obtained in the same way as in the previous example. However, the difference in this case is the term V. For elastic materials this is called Poissons Ratio and is the ratio of the transverse strain to the axial strain (See Appendix C). For any particular metal this is a constant, generally in the range 0.28 to 0.35. For plastics V is not a constant. It is dependent on time, temperature, stress, etc and so it is often given the alternative names of Creep Contraction Ratio or Lateral Strain Ratio. There is very little published information on the creep contraction ratio for plastics but generally it varies from about 0.33 for hard plastics (such as acrylic) to almost 0.5 for elastomers. Some typical values are given in Table 2.1 but do remember that these may change in specific loading situations. [Pg.58]

Paints are complex formulations of polymeric binders with additives including anti-corrosion pigments, colors, plasticizers, ultraviolet absorbers, flame-retardant chemicals, etc. Almost all binders are organic materials such as resins based on epoxy, polyurethanes, alkyds, esters, chlorinated rubber and acrylics. The common inorganic binder is the silicate used in inorganic zinc silicate primer for steel. Specific formulations are available for application to aluminum and for galvanized steel substrates. [Pg.908]

Poly (p-nitrophenyl acrylate)-coated wide-pore glass (WPG) was also used as an activated carrier for the immobilization of biospecific ligands and enzymes, A detailed description of properties of these sorbents and catalysts as well as some specific features of their functioning is given in Sect. 6. [Pg.158]

Immobilization of A and B blood group oligosaccharide haptens and preparation of immunoadsorbents with specificity to anti-A and anti-B antibodies has been carried out with the use of poly acrylate-coated PG (WPG-PA) [124]. Prespacered A and B-trisaccharide-fl-aminopropylglycosides were used for the synthesis. WPG-PA (1 g) quantitatively binds both haptens (2 pinole) whereas some other activated affinity supports (for example, CNBr-Sepharose 4B) do not. On the other hand, glycidoxypropyl-silica binds prespacered haptens completely but these materials reveal no specific adsorptivity. [Pg.171]


See other pages where Acrylates Specifications is mentioned: [Pg.203]    [Pg.204]    [Pg.203]    [Pg.204]    [Pg.134]    [Pg.165]    [Pg.276]    [Pg.248]    [Pg.259]    [Pg.228]    [Pg.229]    [Pg.430]    [Pg.463]    [Pg.291]    [Pg.122]    [Pg.493]    [Pg.516]    [Pg.530]    [Pg.540]    [Pg.547]    [Pg.547]    [Pg.552]    [Pg.559]    [Pg.566]    [Pg.734]    [Pg.1016]    [Pg.1035]    [Pg.1035]    [Pg.215]    [Pg.105]   
See also in sourсe #XX -- [ Pg.217 ]




SEARCH



© 2024 chempedia.info