Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acidity weakly basic probes

The weakly basic probe molecules most commonly used are the following sulphur compounds such as H2S, unsaturated hydrocarbons such as ethylene, carbon monoxide and dcu-terated acetonitrile. They are used to detect the strongest acid sites of the solid under study. In these cases protonation does not occur but there is formation of species linked by hydrogen bonding. [Pg.235]

Infrared spectroscopy has been used for many years to probe acid sites in zeolites. Typically, strong bases such as ammonia or pyridine are adsorbed, and the relative or absolute intensities of bands due to Lewis acid adducts or protonated Bronsted acid adducts are measured. The basicity of ammonia or pyridine is however much stronger than that of most hydrocarbon reactants in zeolite catalysed reactions. Such probe molecules therefore detect all of the acid sites in a zeolite, including those weaker acid sites which do not participate in the catalytic reaction. Interest has recently grown in using much more weakly basic probe molecules which will be more sensitive to variations in acid strength. It is also important in studying smaller pore zeolites to use probe molecules which can easily access all of the available pore volume. [Pg.110]

We have explored rare earth oxide-modified amorphous silica-aluminas as "permanent" intermediate strength acids used as supports for bifunctional catalysts. The addition of well dispersed weakly basic rare earth oxides "titrates" the stronger acid sites of amorphous silica-alumina and lowers the acid strength to the level shown by halided aluminas. Physical and chemical probes, as well as model olefin and paraffin isomerization reactions show that acid strength can be adjusted close to that of chlorided and fluorided aluminas. Metal activity is inhibited relative to halided alumina catalysts, which limits the direct metal-catalyzed dehydrocyclization reactions during paraffin reforming but does not interfere with hydroisomerization reactions. [Pg.563]

Knozinger, H. and Huber, S. (1998) IR spectroscopy of small and weakly interacting molecular probes for acidic and basic zeolites, J. Chem. Soc., Faraday Trans., 94, 2047. [Pg.136]

Basic molecules such as pyridine and NH3 have been the popular choice as the basic probe molecules since they are stable and one can differentiate and quantify the Bronsted and Lewis sites. Their main drawback is that they are very strong bases and hence adsorb nonspecifically even on the weakest acid sites. Therefore, weaker bases such as CO, NO, and acetonitrile have been used as probe molecules for solid acid catalysts. Adsorption of CO at low temperatures (77 K) is commonly used because CO is a weak base, has a small molecular size, a very intense vc=0 band that is quite sensitive to perturbations, is unreactive at low temperature, and interacts specifically with hydroxyl groups and metal cationic Lewis acid sites.26... [Pg.51]

LysoTracker and LysoSensor probes Several commercially available weakly basic amines can be used to stain lysosomes. They selectively accumulate in acidic organelles when applied in very low concentrations (50 nM) and directly before imaging. For live cell imaging, keep in mind that lysosomal probes can exhibit an alkalinizing effect on the lysosomes, such that longer incubation time can induce an increase in lysosomal pH (129). [Pg.362]

Infrared spectroscopy can be used to obtain a great deal of information about zeolitic materials. As mentioned earlier, analysis of the resulting absorbance bands can be used to get information about the structure of the zeolite and other functional groups present due to the synthesis and subsequent treatments. In addition, infrared spectroscopy can be combined with adsorption of weak acid and base probe molecules to obtain information about the acidity and basicity of the material. Other probe molecules such as carbon monoxide and nitric oxide can be used to get information about the oxidation state, dispersion and location of metals on metal-loaded zeolites. [Pg.113]

The acid sites strength can be determined by measuring the heats of adsorption of basic probe molecules. The basic probes most commonly used are NH3 (pTTa = 9.24, proton affinity in gas-phase = 857.7 kJ/mol) and pyridine (pTTa = 5.19, proton affinity in gas-phase = 922.2 kJ/mol). The center of basicity of these probes is the electron lone pair on the nitrogen. When chemisorbed on a surface possessing acid properties, these probes can interact with acidic protons, electron acceptor sites, and hydrogen from neutral or weakly acidic hydroxyls. [Pg.224]

The minute quantity of adsorbate remaining on the column after weakly bound probe has desorbed is chemisorbed to strongly acidic or basic sites on the substrate. The desorption profile obtained by ramping the column temperature is an index of the range of effective bond strength between the solid and adsorbed vapor. The flame ionization detector also registers desorption of adventitious organic contaminants polytherms with no probe on the column must be obtained separately so that sorbate and contaminant desorption can be deconvolved. [Pg.389]

Tables XIII I76-I79), XIV (I80-I83), and XV present a survey of micro-calorimetric studies performed for silica, alumina, and silica-alumina, respectively. Silica displays relatively low heats of adsorption for both basic probe molecules (e.g., ammonia, triethylamine, n-butylamine, pyridine, and trimethylamine) and acidic probe molecules (e.g., hexafluoroisopropanol), indicating that the surface sites on silica are both weakly acidic and basic. Most of the adsorption over silica is considered mainly to be due to hydrogen bonding and van der Waals interaction. Infrared and gravimetric adsorption measurements of pyridine adsorbed on SiO at 423 K have shown that more than 98% of the pyridine adsorbed was hydrogen bonded (62). The differential heats of ammonia 18, 74, 85, 105, 140, 147) and triethylamine (18, 71, 94. 105, 176) on silica show a considerable decrease as the adsorption temperature is increased. Tables XIII I76-I79), XIV (I80-I83), and XV present a survey of micro-calorimetric studies performed for silica, alumina, and silica-alumina, respectively. Silica displays relatively low heats of adsorption for both basic probe molecules (e.g., ammonia, triethylamine, n-butylamine, pyridine, and trimethylamine) and acidic probe molecules (e.g., hexafluoroisopropanol), indicating that the surface sites on silica are both weakly acidic and basic. Most of the adsorption over silica is considered mainly to be due to hydrogen bonding and van der Waals interaction. Infrared and gravimetric adsorption measurements of pyridine adsorbed on SiO at 423 K have shown that more than 98% of the pyridine adsorbed was hydrogen bonded (62). The differential heats of ammonia 18, 74, 85, 105, 140, 147) and triethylamine (18, 71, 94. 105, 176) on silica show a considerable decrease as the adsorption temperature is increased.
In order to more precisely differenciate the acid sites, adsorption of pyridine (pKa=5.25), 3,5-dimethylpyridine (pKa=6.15) and 2,6-dimethylpyridine (pKa=6.72) was carried out at 353 K on the samples. These three basic probes display a lower pKa than ammonia (pKa=9.25) and should titrate less weak acid sites. 2,6-lutidine (2,6-DMP) is supposed to adsorb on Bronsted sites preferently to 3,5-lutidine (3,5-DMP) which should adsorb, as pyridine, on both Lewis and Bronsted sites. This behavior can be explained by the steric hindrance due to the methyl groups, the nitrogen atom being less accessible. For example. Figure 4 shows the differential heats of adsorption of the three probe molecules on the sample with Ti=249 pmol/g pretreated at 773 K. All the curves show a sharp decrease till... [Pg.104]

A number of methods are used for studying the sorption of basic probe molecules on zeolites to learn more about zeolite acidity. A common disadvantage of all the examinations is that adsorbed basic probe increases the electron density on the solid and, thereby, change the acidic properties of the sites examined. From this aspect it seems advantageous to probe the acid sites with a weak base, e. g., with a hydrocarbon. It was shown that adsorption of alkanes is localized to the strong Brdnsted acid sites of H-zeolites [1, 2]. However, recent results suggest that usually the diffusion in the micropores controls the rate of hydrocarbon transport [3-5]. Obviously, the probe suitable for the batch FR examination of the sites has to be non-reactive and the sorption dynamics must control the rate of mass transport. The present work shows that alkanes can not be used because, due to their weak interaction with the H-zeolites, the diffusion is the slowest step of their transport. In contrast, acetylene was found suitable to probe the zeolitic acid sites. The results are discussed in comparison with those obtained using ammonia as probe. Moreover, it is demonstrated that fundamental information can be obtained about the alkane diffusivity in H-zeolites... [Pg.587]

It is worth noting that the model for the carbon black surface deduced from these observations possesses a limited predictive capability for other materials systems than those studied herein. The current viewpoint that polymer interactions may be discussed in terms of Lewis acidity and basicity associated with particular molecular groups comprising the polymer(44-46) coincides with the present description of the origin of carbon black activity. Specifically BPL, which contains localized Lewis acid sites, can be expected to interact readily with polymer sites that are capable of acting as a Lewis base towards the carbon sites. On the other hand Graphon, which lacks these localized Lewis acid sites, is predicted to interact weakly with the same polymer sites. Contact charge injection experiments (3 3) provide a particularly sensitive probe of the carbon-polymer interaction and may supply the best means to test such model predictions. [Pg.221]

Investigations of the surface Lewis acidity of aluminas have mainly been performed by adsorbing basic probes after previous dehydroxylation of the samples by outgassing. Based on spectroscopic results, most authors agree that at least three different types of Lewis acid sites (with weak, medium, and high acid strength) exist on transition aluminas (293). [Pg.374]

The sur ce FT-IR stey of a nanosize aluminum nitride powder definitely brought evidence of the specific chemical composition of its first atomic layer. The unavoidable contamination, mainly by atmospheric water, implies the presence of oxygen and hydrogen in this first layer. As a result, a comparison with the alumina sur ce appeared quite reasonable. Indeed, methanol and pyridine used as probe molecules showed the same behavior on both material sur ces. The acidity of the AIN sur ce was proven by the presence of two types of Al Lewis sites. However for AIN, a specific dissociative adsorption mechanism of acidic methanol could be possibly explained by the presence of weakly basic AI3N sites. Besides, the isotopic exchange... [Pg.331]


See other pages where Acidity weakly basic probes is mentioned: [Pg.124]    [Pg.131]    [Pg.420]    [Pg.379]    [Pg.127]    [Pg.393]    [Pg.140]    [Pg.330]    [Pg.16]    [Pg.102]    [Pg.107]    [Pg.109]    [Pg.146]    [Pg.153]    [Pg.252]    [Pg.54]    [Pg.212]    [Pg.212]    [Pg.242]    [Pg.188]    [Pg.856]    [Pg.68]    [Pg.26]    [Pg.25]    [Pg.5]    [Pg.329]    [Pg.591]    [Pg.75]    [Pg.591]    [Pg.33]    [Pg.51]    [Pg.51]    [Pg.88]   
See also in sourсe #XX -- [ Pg.136 ]




SEARCH



Acidic probe

Acidic-basic

Acidity probe

Acidity/basicity

Basicity probe

Weak acids

Weakly acidic

Weakly basic

© 2024 chempedia.info