Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetic acid, manufacture from ethylene

Although we have included acetic acid manufacture under ethylene derivatives, as you can see it is made from three of the seven basic organics ethylene, C4 hydrocarbons, and methane, with the most important method being from methane. Pure 100% acetic acid is sometimes called glacial acetic because when cold it will solidity into layered crystals similar in appearance to a glacier. It is a colorless liquid with a pungent, vinegar odor and sharp acid taste, bp 118°C, and mp 17°C. [Pg.152]

Polymers. Hydrocarbons from petroleum and natural gas serve as the raw material for virtually all polymeric materials commonly found in commerce, with the notable exception of rayon which is derived from cellulose extracted from wood pulp. Even with rayon, however, the cellulose is treated with acetic acid (qv), much of which is manufactured from ethylene (see Fibers, regenerated cellulosics). [Pg.369]

Since 1960, the Hquid-phase oxidation of ethylene has been the process of choice for the manufacture of acetaldehyde. There is, however, stiU some commercial production by the partial oxidation of ethyl alcohol and hydration of acetylene. The economics of the various processes are strongly dependent on the prices of the feedstocks. Acetaldehyde is also formed as a coproduct in the high temperature oxidation of butane. A more recently developed rhodium catalyzed process produces acetaldehyde from synthesis gas as a coproduct with ethyl alcohol and acetic acid (83—94). [Pg.51]

Vinyl ethers are prepared in a solution process at 150—200°C with alkaH metal hydroxide catalysts (32—34), although a vapor-phase process has been reported (35). A wide variety of vinyl ethers are produced commercially. Vinyl acetate has been manufactured from acetic acid and acetylene in a vapor-phase process using zinc acetate catalyst (36,37), but ethylene is the currently preferred raw material. Vinyl derivatives of amines, amides, and mercaptans can be made similarly. A/-Vinyl-2-pyrroHdinone is a commercially important monomer prepared by vinylation of 2-pyrroHdinone using a base catalyst. [Pg.374]

Chemical Uses. In Europe, products such as ethylene, acetaldehyde, acetic acid, acetone, butadiene, and isoprene have been manufactured from acetylene at one time. Wartime shortages or raw material restrictions were the basis for the choice of process. Coking coal was readily available in Europe and acetylene was easily accessible via calcium carbide. [Pg.393]

Most of the vinyl acetate produced in the United States is made by the vapor-phase ethylene process. In this process, a vapor-phase mixture of ethylene, acetic acid, and oxygen is passed at elevated temperature and pressures over a fixed-bed catalyst consisting of supported palladium (85). Less than 70% oxygen, acetic acid, and ethylene conversion is realized per pass. Therefore, these components have to be recovered and returned to the reaction zone. The vinyl acetate yield using this process is typically in the 91—95% range (86). Vinyl acetate can be manufactured also from acetylene, acetaldehyde, and the hquid-phase ethylene process (see Vinyl polymers). [Pg.381]

Ethanol s use as a chemical iatemiediate (Table 8) suffered considerably from its replacement ia the production of acetaldehyde, butyraldehyde, acetic acid, and ethyUiexanol. The switch from the ethanol route to those products has depressed demand for ethanol by more than 300 x 10 L (80 x 10 gal) siace 1970. This decrease reflects newer technologies for the manufacture of acetaldehyde and acetic acid, which is the largest use for acetaldehyde, by direct routes usiag ethylene, butane (173), and methanol. Oxo processes (qv) such as Union Carbide s Low Pressure Oxo process for the production of butanol and ethyUiexanol have totaUy replaced the processes based on acetaldehyde. For example, U.S. consumption of ethanol for acetaldehyde manufacture declined steadily from 50% ia 1962 to 37% ia 1964 and none ia 1990. Butadiene was made from ethanol on a large scale duriag World War II, but this route is no longer competitive with butadiene derived from petroleum operations. [Pg.415]

A second manufacturing method for acetic acid utilizes butane from the C4 petroleum stream rather than ethylene. It is a very complex oxidation with a variety of products formed, but conditions can be controlled to allow a large percentage of acetic acid to be formed. Cobalt (best), manganese, or chromium acetates are catalysts with temperatures of 50-250 °C and a pressure of 800 psi. [Pg.151]

In 1969, 90% of vinyl acetate was manufactured by this process. By 1975 only 10% was made from acetylene, and in 1980 it was obsolete. Instead, a newer method based on ethylene replaced this old acetylene chemistry. A Wacker catalyst is used in this process similar to that for acetic acid. Since the acetic acid can also be made from ethylene, the basic raw material is solely ethylene, in recent years very economically advantageous as compared to acetylene chemistry. An older liquid-phase process has been replaced by a vapor-phase reaction run at 70-140 psi and 175-200°C. Catalysts may be (1) C—PdCb—CuCb, (2) PdClj—AI2O3, or (3) Pd—C, KOAc. The product is distilled water, acetaldehyde, and some polymer are... [Pg.153]

Chemicals obtained from jjetroleum having four carbons are manufactured at a considerably lower scale than ethylene or propylene derivatives. Only five C4 compounds— butadiene, acetic acid, vinyl acetate, isobutylene, and methyl /-butyl ether (MTBE)— appear in the top 50. The manufacture of butadiene and isobutylene, as well as the separation of other C4 compounds from petroleum, is described in Chapter 8, Sections 3-5. Acetic acid was discussed as a derivative of ethylene in Chapter 9, Section 3 and is discussed as a derivative of methane in Chapter 12, Section 3. Vinyl acetate was discussed in Chapter 9, Section 4. A few important derivatives of C4 chemistiy will be briefly mentioned here as well as MTBE. [Pg.179]

Two manufacturing methods and the uses of acetic acid were discussed in Chapter 9, Section 3, since it is made from ethylene and the C4 stream. [Pg.210]

The recent dramatic increase in the price of petroleum feedstocks has made the search for high selectivities more urgent. Several new processes based on carbon monoxide sources are currently competing with older oxidation processes.103,104 The more straightforward synthesis of acetic acid from methanol carbonylation (Monsanto process) has made the Wacker process obsolete for the manufacture of acetaldehyde, which used to be one of the main acetic acid precursors. Several new methods for the synthesis of ethylene glycol have also recently emerged and will compete with the epoxidation of ethylene, which is not sufficiently selective. The direct synthesis of ethylene... [Pg.329]

Micro structured wells (2 mm x 2 mm x 0.2 mm) on the catalyst quartz wafer were manufactured by sandblasting with alumina powder through steel masks [7]. Each well was filled with mg catalyst. This 16 x 16 array of micro reactors was supplied with reagents by a micro fabricated gas distribution wafer, which also acted as a pressure restriction. The products were trapped on an absorbent plate by chemical reaction, condensation or absorption. The absorbent array was removed from the reactor and sprayed with dye solution to obtain a color reaction, which was then used for the detection of active catalysts by a CCD camera. Alternatively, the analysis was also carried out with a scanning mass spectrometer. The above-described reactor configuration was used for the primary screening of the oxidative dehydrogenation of ethane to ethylene, the selective oxidation of ethane to acetic acid, and the selective ammonoxidation of propane to acrylonitrile. [Pg.444]

Liquid phase oxidation of hydrocarbons by molecular oxygen forms the basis for a wide variety of petrochemical processes,3 "16 including the manufacture of phenol and acetone from cumene, adipic acid from cyclohexane, terephthalic acid from p-xylene, acetaldehyde and vinyl acetate from ethylene, propylene oxide from propylene, and many others. The majority of these processes employ catalysis by transition metal complexes to attain maximum selectivity and efficiency. [Pg.274]

The synthesis of acetaldehyde by oxidation of ethylene, generally known as the Wacker process, was a major landmark in the application of homogeneous catalysis to industrial organic chemistry. It was also a major step in the displacement of acetylene (made from calcium carbide) as the feedstock for the manufacture of organic chemicals. Acetylene-based acetaldehyde was a major intermediate for production of acetic acid and butyraldehyde. However the cost was high because a large energy input is required to produce acetylene. The acetylene process still survives in a few East European countries and in Switzerland, where low cost acetylene is available. [Pg.65]

Figure 28 shows that the chemistry involved in the Wacker process could in principle be extended to other nucleophiles. The modern catalytic manufacturing process making vinyl acetate from ethylene and acetic acid is based on the observation that palladium catalyzed oxidation of ethylene to acetaldehyde can be converted into an acetoxylation reaction if carried out in a solution of acetic acid and in the presence of sodium acetate (Equation 42). [Pg.70]

Ethyl acetate can be manufactured by the slow distillation of a mixture of ethanol and acetic acid in the presence of concentrated sulfuric acid. It has also been prepared from ethylene using an aluminum alkoxide catalyst. [Pg.269]

The processes for the manufacture of acetic anhydride have included, initially, the distillation of wood pulp, which was followed by the ketene route from acetic acid or acetone and finally the ethylene based oxidation of acetaldehyde. The carbonylation of CH3OAC to acetic anhydride has in part replaced anhydride capacity from the more expensive processes. [Pg.116]

There has been a substantial change in the overall fine chemical business in the last four decades. At the end of World War II and into the 1950s, the term fine chemicals did not exist. The fine chemical industry started from basic chemicals (ethylene oxide, acetic acid, phenol, etc.) and developed more advanced organic intermediates. Plants were built that were dedicated to the manufacture of, for example, alkylphenols, acetoacetates, and carboxymethylcellulose. [Pg.288]

Propionic acid is produced commercially by several different processes. It is a by-product of the liquid phase oxidation of hydrocarbons for the manufacture of acetic acid. It is also made from carbon monoxide and ethylene by the 0x0 process through a propionaldehyde intermediate or by the carbonylation of ethylene with a nickel-based catalyst. BASF uses the one-step Reppe carbonylation process with a nickel propionate catalyst to produce 40,000 metric tons per year of propionic acid in Ludwigshafen, Germany. The hydrocarboxylation chemistry is shown in Eq. (29) ... [Pg.244]


See other pages where Acetic acid, manufacture from ethylene is mentioned: [Pg.145]    [Pg.69]    [Pg.27]    [Pg.358]    [Pg.80]    [Pg.70]    [Pg.195]    [Pg.145]    [Pg.27]    [Pg.358]    [Pg.157]    [Pg.365]    [Pg.279]    [Pg.244]    [Pg.52]    [Pg.44]    [Pg.518]    [Pg.2]    [Pg.69]   
See also in sourсe #XX -- [ Pg.159 ]




SEARCH



Acetal from

Acetic acid manufacture

Acetic manufacture

Ethylene acetals

Ethylene acidity

Ethylene acids

© 2024 chempedia.info