Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetic acid catalyzed carbonylation

Monsanto acetic acid A process for making acetic acid by carbonylation of methanol, catalyzed by rhodium iodide. Operated by BP. [Pg.182]

In one case, however, the carbonyl group did migrate in the acetic acid catalyzed rearrangement of cyclobutanone 5 in refluxing toluene.141 This is probably due to a different mechanism involving the second carbonyl and the methoxy group present in 5. [Pg.539]

The preparation of acetic acid represents a special case. Olah and coworkers as well as Hogeveen and coworkers have demonstrated that CO can react with methane under superacidic conditions, giving the acetyl cation and by subsequent quenching acetic acid or its derivatives (see Section 7.2.3). Monosubstituted methanes, such as methyl alcohol (or dimethyl ether), can be carbonylated to acetic acid.115 Similarly, methyl halides undergo acid-catalyzed carbonylation.115,116 Whereas the acid-catalyzed reactions can be considered as analogs of the Koch reaction, an efficient Rh-catalyzed carbonylation of methyl alcohol in the presence of iodine (thus in situ forming methyl iodide) was developed by Monsanto and became the dominant industrial process (see Section 7.2.4). [Pg.380]

Industrial Applications. Several large scale industrial processes are based on some of the reactions listed above, and more are under development. Most notable among those currently in use is the already mentioned Wacker process for acetaldehyde production. Similarly, the production of vinyl acetate from ethylene and acetic acid has been commercialized. Major processes nearing commercialization are hydroformylations catalyzed by phosphine-cobalt or phosphine-rhodium complexes and the carbonylation of methanol to acetic acid catalyzed by (< 3P) 2RhCOCl. [Pg.211]

Significantly better results in addition of non-stabilized nucleophiles have come from hydrogenolysis reactions using formate as a hydride donor as shown in Scheme 8E.46. The racemic cyclic acetate and prochiral linear carbonates were reduced in good enantioselectivities by monophosphine ligands (/ )-MOP (16) and (Zf)-MOP-phen (17), respectively [195]. The chirality of the allylsilane can be efficiently transferred to the carbinol center of the homoallylic alcohol by the subsequent Lewis acid catalyzed carbonyl addition reaction 1196], The analogous... [Pg.637]

Clemmensen-type reduction.1 Aromatic ketones can be reduced to the corresponding methylene compounds with ammonium formate on transfer hydrogenation in acetic acid catalyzed by 10% Pd/C. The reduction is usually complete in 10-30 minutes at 110°. Halo and nitro substituents can be reduced under these conditions, and a,p-unsaturated carbonyl groups are reduced to saturated carbonyl groups. [Pg.13]

Monsanto acetic acid A process for making acetic acid by carbonylation of methanol, catalyzed by rhodium iodide. Operated by BP. A variation of this process, the low water process, used added Group 1 metal iodides such as lithium iodide to enhance the productivity this was practiced by Celenese and by Daicel. [Pg.243]

Al.2.6 Analysis of a Model System the Monsanto Carbonylation of Methanol to Acetic Acid Catalyzed by Rh/I ... [Pg.263]

The Monsanto carbonylation of methanol to acetic acid catalyzed by Rh/H is a well-understood example of an organometallic catalytic cycle and can act as a good model with well defined steps (shown schematically in Chapter 4, Section 4.2.4). The starting material is the square planar Rh(I) complex, [Rh(CO)2l2] which is easily accessible by reaction of rhodium trichloride in solution with CO in the presence of iodide. This undergoes oxidative addition with Mel very readily to give the methyl-Rh(III) complex [Rh(Me)(CO)2l3] as an unstable... [Pg.263]

Another large-scale process involving CO chemistry is the carbonylation of methanol to give acetic acid catalyzed by a Rh complex, which requires a cocatalyst (promoter), CH3I (see 14.6.5) ... [Pg.72]

A common way to change reaction conditions for the oxidation of alcohols is to modify the acid that is added to the medium. Indeed, chromium trioxide will have different oxidizing abilities in different acids. Since most organic compounds are insoluble in water, a cosolvent is usually required to dissolve not only the chromium reagent but also the alcohol substrate. This solvent must be resistant to oxidation, and acetic acid or acetone are commonly used. For the alcohol - carbonyl conversion several Cr(VI) reagents can be used, including chromium trioxide in water or aqueous acetic acid catalyzed by mineral acid, sodium dichromate in aqueous acetone catalyzed by mineral acid, sodium dichromate in acetic acid, the Cr03 pyridine complex, and err-butyl chromate.Both primary and secondary alcohols can be oxidized to the aldehyde or ketone, respectively. Aldehydes may be oxidized to the carboxylic acid under some conditions. [Pg.196]

Another carbonylation reaction of major industrial importance is the reaction of methanol with CO to give acetic acid, catalyzed by carbonyls of Fe, Co, and especially Rh in the presence of halides (Eq. 2-90). [Pg.49]

Paulik and Roth Methanol carbonylation to acetic acid catalyzed by rhodium complexes in solution... [Pg.6]

The most commonly used protected derivatives of aldehydes and ketones are 1,3-dioxolanes and 1,3-oxathiolanes. They are obtained from the carbonyl compounds and 1,2-ethanediol or 2-mercaptoethanol, respectively, in aprotic solvents and in the presence of catalysts, e.g. BF, (L.F. Fieser, 1954 G.E. Wilson, Jr., 1968), and water scavengers, e.g. orthoesters (P. Doyle. 1965). Acid-catalyzed exchange dioxolanation with dioxolanes of low boiling ketones, e.g. acetone, which are distilled during the reaction, can also be applied (H. J. Dauben, Jr., 1954). Selective monoketalization of diketones is often used with good success (C. Mercier, 1973). Even from diketones with two keto groups of very similar reactivity monoketals may be obtained by repeated acid-catalyzed equilibration (W.S. Johnson, 1962 A.G. Hortmann, 1969). Most aldehydes are easily converted into acetals. The ketalization of ketones is more difficult for sterical reasons and often requires long reaction times at elevated temperatures. a, -Unsaturated ketones react more slowly than saturated ketones. 2-Mercaptoethanol is more reactive than 1,2-ethanediol (J. Romo, 1951 C. Djerassi, 1952 G.E. Wilson, Jr., 1968). [Pg.165]

Ca.ta.lysis, The readily accessible +1 and +3 oxidation states of rhodium make it a useful catalyst. There are several reviews of the catalytic properties of rhodium available (130—132). Rhodium-catalyzed methanol carbonylation (Monsanto process) accounted for 81% of worldwide acetic acid by 1988 (133). The Monsanto acetic acid process is carried out at 175°0 and 1.5 MPa (200 psi). Rhodium is introduced as RhCl3 but is likely reduced in a water... [Pg.180]

Thioketals are readily formed by acid-catalyzed reaction with ethane-dithiol. Selective thioketal formation is achieved at C-3 in the presence of a 6-ketone by carrying out the boron trifluoride catalyzed reaction in diluted medium. Selective protection of the 3-carbonyl group as a thioketal has been effected in high yield with A" -3,17-diketones, A" -3,20-diketones and A" -3,l 1,17-triones in acetic acid at room temperature in the presence of p-toluenesulfonic acid. In the case of thioketals the double bond remains in the 4,5-position. This result is attributed to the greater nucleophilicity of sulfur as compared to oxygen, which promotes closure of intermediate (66) to the protonated cyclic mercaptal (67) rather than elimination to the 3,5-diene [cf. ketal (70) via intermediates (68) and (69)]." " ... [Pg.392]

Acetic acid is obtained from different sources. Carbonylation of methanol is currently the major route. Oxidation of butanes and butenes is an important source of acetic acid, especially in the U.S. (Chapter 6). It is also produced by the catalyzed oxidation of acetaldehyde ... [Pg.199]

Currently, the major route for obtaining acetic acid (ethanoic acid) is the carbonylation of methanol (Chapter 5). It may also be produced by the catalyzed oxidation of n-butane (Chapter 6). [Pg.239]

Acid-catalyzed reaction of an aldehyde or ketone with 2 equivalents of a monoalcohol or 1 equivalent of a diol yields an acetal, in which the carbonyl oxygen atom is replaced by two -OK groups from the alcohol. [Pg.720]

Rhodium catalyzed carbonylations of olefins and methanol can be operated in the absence of an alkyl iodide or hydrogen iodide if the carbonylation is operated in the presence of iodide-based ionic liquids. In this chapter, we will describe the historical development of these non-alkyl halide containing processes beginning with the carbonylation of ethylene to propionic acid in which the omission of alkyl hahde led to an improvement in the selectivity. We will further describe extension of the nonalkyl halide based carbonylation to the carbonylation of MeOH (producing acetic acid) in both a batch and continuous mode of operation. In the continuous mode, the best ionic liquids for carbonylation of MeOH were based on pyridinium and polyalkylated pyridinium iodide derivatives. Removing the highly toxic alkyl halide represents safer, potentially lower cost, process with less complex product purification. [Pg.329]

Historically, the rhodium catalyzed carbonylation of methanol to acetic acid required large quantities of methyl iodide co-catalyst (1) and the related hydrocarboxylation of olefins required the presence of an alkyl iodide or hydrogen iodide (2). Unfortunately, the alkyl halides pose several significant difficulties since they are highly toxic, lead to iodine contamination of the final product, are highly corrosive, and are expensive to purchase and handle. Attempts to eliminate alkyl halides or their precursors have proven futile to date (1). [Pg.329]

In this manuscript, we will chronicle the discoveiy and development of these non-alkyl halide containing processes for the rhodium catalyzed carbonylation of ethylene to propionic acid and methanol to acetic acid when using ionic liquids as solvent. [Pg.330]

The Mukaiyama aldol reaction refers to Lewis acid-catalyzed aldol addition reactions of silyl enol ethers, silyl ketene acetals, and similar enolate equivalents,48 Silyl enol ethers are not sufficiently nucleophilic to react directly with aldehydes or ketones. However, Lewis acids cause reaction to occur by coordination at the carbonyl oxygen, activating the carbonyl group to nucleophilic attack. [Pg.82]

The carbonyl group can be deprotected by acid-catalyzed hydrolysis by the general mechanism for acetal hydrolysis (see Part A, Section 7.1). A number of Lewis acids have also been used to remove acetal protective groups. Hydrolysis is promoted by LiBF4 in acetonitrile.249 Bismuth triflate promotes hydrolysis of dimethoxy, diethoxy, and dioxolane acetals.250 The dimethyl and diethyl acetals are cleaved by 0.1-1.0 mol % of catalyst in aqueous THF at room temperature, whereas dioxolanes require reflux. Bismuth nitrate also catalyzes acetal hydrolysis.251... [Pg.273]


See other pages where Acetic acid catalyzed carbonylation is mentioned: [Pg.424]    [Pg.433]    [Pg.433]    [Pg.365]    [Pg.424]    [Pg.746]    [Pg.1816]    [Pg.1821]    [Pg.345]    [Pg.58]    [Pg.90]    [Pg.191]    [Pg.153]    [Pg.171]    [Pg.89]    [Pg.110]    [Pg.148]    [Pg.175]    [Pg.141]    [Pg.149]    [Pg.115]    [Pg.83]    [Pg.145]   


SEARCH



Acetals, acid catalyzed

Acetic acid carbonylation

Acetic carbonylation

Acidic carbonyl

Carbonylation catalyzed

Catalyzed Carbonylations

© 2024 chempedia.info