Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Absolute filtration

The honeycomb configuration of ceramic filters offers a high surface area per unit volume, thereby permitting a compact filter size [12]. The absolute filtration surface area depends on cell size, filter volume, and the plugging pattern, all of which are design parameters whose optimization, as will be shown shortly, calls for trade-offs in pressure drop, filtration efficiency, mechanical durability, thermal integrity, and space availability. [Pg.509]

On a broader scale, pharmaceutical manufacturers were beginning to utilize absolute filtration as a primary engineering control in the maintenance of large, carefully controlled clean spaces in the batch production of quality-controlled parenteral products. In this application, LAF was supplied directly to production lines and extended critical worksurfaces within defined, non-turbulent entrance and exit planes as parallel or columnated airflow (misnamed laminar flow ). This highly controlled laminar airstream was supplied to the critical worksurface, in addition to conventionally supplied turbulent airflow to the general space, provided through terminal diffusers for filtration of the balance of room air. In this manner, the stepped control of all critical, as well as support areas was achieved. [Pg.2172]

Refinement of HEPA filter manufacturing and testing technology and development of the ultra low particulate air (ULPA) filter, have led to an increase of absolute filtration retention efficiency of greater than two orders of magnitude above 99.97%. HEPA filtration efficiencies range from a minimum of 99.97 to 99.99%, with ULPA efficiencies above 99.9999%o for particulates larger and smaller than 0.3 pm in diameter... [Pg.2173]

If not, they were discarded. The second step taken to eliminate variabi1ity— in this case the variability within the 28 to 37 second range—involved the use of relative rather than absolute filtration times. Relative filtration times were calculated as follows (12) ... [Pg.61]

Filtration can be distinguished in two types (1) absolute and (2) depth. In absolute filtration a steel or plastic screen, cartridge, or paper filter removes particles from the oil. These filters have certain porosity and most of them retain particles down to 5 pm, when used for passive filtration [72]. If diato-maceous earth or other absorbents are used, they are mixed with the oil in the fryer at the end of the day and/or shift and the suspension is pumped through the filter and circulated through the filter and back into the fryer until a filter bed is established and the fryer is free of fines and particulates. Filter media suppliers recommend a dose between 0.1% and 2.0%, by weight on the frying medium [8]. [Pg.1202]

Sometimes the crude substance may contain an insoluble impurity, and on cooling the solution it may be difficult to judge how much of the solid matter is merely undissolved impurity and how much is solute which has subsequently crystallised from solution. To avoid this difficulty, the hot solution should be filtered, and should thus always be absolutely clear before cooling is attempted. Therefore filter the hot solution into a clean tube through a very small fluted filter-paper contained in a correspondingly small glass funnel, which should have had its stem cut off as that shown in Fig. 6, p. 12 (and for the same reason). Unless the upper part of the filter is cut awav to reduce its size to a minimum, a large proportion of the solution will remain held mechanically in the pores of the paper itself and only a few drops of clear filtrate will be obtained. [Pg.16]

A certain amount of hydrolysis of the original acetamide to acid and ammonia always occurs, and the final amine always contains traces of ammonia. This is separated by extracting the mixed anhydrous hydrochlorides with absolute ethanol, which dissolves the amine hydrochloride but not the ammonium chloride filtration of the hot ethanolic extract removes the ammonium chloride, whilst the amine hydrochloride crystallises readily from the filtrate on cooling. [Pg.128]

Add 5 ml. (5 g.) of acetophenone, 1-25 g. of finely powdered paraformaldehyde, and 3 5 g. of dry dimethylamine hydrochloride to 8 ml. of absolute ethanol, and then boil the mixture under reflux for 1-5 hours. Filter the solution (which is now almost entirely clear) through a preheated filter-funnel, and cool the filtrate in ice-water with stirring. The propiophenone hydrochloride rapidly separates as white crystals filter oflF the crystals at the pump and recrystallise from a small quantity of ethanol m.p. 155-156°. Yield, 2 5 g. [Pg.262]

Pure pyridine may be prepared from technical coal-tar pyridine in the following manner. The technical pyridine is first dried over solid sodium hydroxide, distilled through an efficient fractionating column, and the fraction, b.p. 114 116° collected. Four hundred ml. of the redistilled p)rridine are added to a reagent prepared by dissolving 340 g. of anhydrous zinc chloride in a mixture of 210 ml. of concentrated hydrochloric acid and 1 litre of absolute ethyl alcohol. A crystalline precipitate of an addition compound (probable composition 2C5H5N,ZnCl2,HCl ) separates and some heat is evolved. When cold, this is collected by suction filtration and washed with a little absolute ethyl alcohol. The yield is about 680 g. It is recrystaUised from absolute ethyl alcohol to a constant m.p. (151-8°). The base is liberated by the addition of excess of concentrated... [Pg.175]

Mix 50 ml. of formalin, containing about 37 per cent, of formaldehyde, with 40 ml. of concentrated ammonia solution (sp. gr. 0- 88) in a 200 ml. round-bottomed flask. Insert a two-holed cork or rubber stopper carrying a capillary tube drawn out at the lower end (as for vacuum distillation) and reaching almost to the bottom of the flask, and also a short outlet tube connected through a filter flask to a water pump. Evaporate the contents of the flask as far as possible on a water bath under reduced pressure. Add a further 40 ml. of concentrated ammonia solution and repeat the evaporation. Attach a reflux condenser to the flask, add sufficient absolute ethyl alcohol (about 100 ml.) in small portions to dissolve most of the residue, heat under reflux for a few minutes and filter the hot alcoholic extract, preferably through a hot water fuimel (all flames in the vicinity must be extinguished). When cold, filter the hexamine, wash it with a little absolute alcohol, and dry in the air. The yield is 10 g. Treat the filtrate with an equal volume of dry ether and cool in ice. A fiulher 2 g. of hexamine is obtained. [Pg.326]

Use 01 g. of the platinum oxide catalyst and 11 4 g, of pure cinnamic acid dissolved in 100 ml. of absolute alcohol. The theoretical volume of hydrogen is absorbed after 7-8 hours. Filter off the platinum, and evaporate the filtrate on a water bath. The resulting oil solidifies on cooling to a colourless acid, m.p. 47-48° (11-2 g.). Upon recrystallisation from light petroleum, b.p. 60-80°, pure dihydrocinnamic acid, m.p. 48-49°, is obtained. [Pg.474]

Method 1. Treat 2 0 g. of the mixture of amines with 40 ml. of 10 per cent, sodium hydroxide solution and add 4 g. (3 ml.) of benzenesulphonyl chloi de (or 4 g. of p-toluenesulphonyl chloride) in small portions. Warm on a water bath to complete the reaction. Acidify the alkaline solution with dilute hydrochloric acid when the sulphonamides of the primary and secondary amines are precipitated. Filter off the solid and wash it with a little cold water the tertiary amine will be present in the filtrate. To convert any disulphOnamide that may have been formed from the primary amine into the sulphonamide, boil the solid under reflux with 2 0 g. of sodium dissolved in 40 ml. of absolute ethyl alcohol for 30 minutes. Dilute with a little water and distil off the alcohol filter off the precipitate of the sulphonamide of the secondary amine. Acidify the filtrate with dilute hydrochloric acid to precipitate the derivative of the primary amine. Recrystallise the respective derivatives from alcohol or from dilute alcohol, and identify them inter alia by a determination of the m.p. [Pg.651]

If one is absolutely serious about ultra pure safrole then it can be separated from the eugenol-free sassafras oil by treatment with mercuric acetate [1,2,3,4] which likes that terminal double bond that only safrole has. The Hg(AcO)2 latches on to safrole at that double bond bringing it into solution as a solid sort of like the way that eugenol was. The safrole can then be separated from its still oily buddies by vacuum filtration. Safrole is then regenerated to its normal oily form by treatment with hydrochloric acid (HCI) which flicks the Hg(AcO)2 off the safrole and the safrole double bond reforms. As it so happens, the mercuric acetate also reforms intact so that it can be reused again such as in one of those... [Pg.34]

For the HCI salt Do exactly as above except use 6N Hydrochloric Acid. 6N HCI may be produced by diluting 60.4mL of "Muriatic Acid" to lOOmL with distilled water. Evaporate the bubbler solution to dryness then add 15ml of water, lOmL 10% NaOH soln. and heat gently to a boil with constant motion until dense white fumes appear. This will remove the Ammonium Chloride. Remove from heat while stirring as it cools down. Pulverize the dry residue, then reflux with absolute Ethanol for several minutes. Filter the refluxed soln. on a heated Buchner or Hirsch funnel, then distill the alcohol off the filtrate until crystals just begin to form. Allow the soln. to cool naturally to room temperature, then cool further in an ice bath. Filter the solution on a chilled Buchner funnel with suction. The yield of Meth iamine Hydrochloride should be around 55% of the theoretical. [Pg.264]

Direct interception refers to a sieve-type mechanism in which contaminants larger than the filter pore size are directly trapped by the filter. This sieve retention mechanism of particle arrest is the mechanism of choice and occurs owing to geometric or spatial restraint. This type of particle arrest is considered to be absolute, that is, it is independent of filtration conditions. [Pg.139]

The so-called hyperbar vacuum filtration is a combination of vacuum and pressure filtration in a pull—push arrangement, whereby a vacuum pump of a fan generates vacuum downstream of the filter medium, while a compressor maintains higher-than-atmospheric pressure upstream. If, for example, the vacuum produced is 80 kPa, ie, absolute pressure of 20 kPa, and the absolute pressure before the filter is 150 kPa, the total pressure drop of 130 kPa is created across the filter medium. This is a new idea in principle but in practice requires three primary movers a Hquid pump to pump in the suspension, a vacuum pump to produce the vacuum, and a compressor to supply the compressed air. The cost of having to provide, install, and maintain one additional primary mover has deterred the development of hyperbar vacuum filtration only Andrit2 in Austria offers a system commercially. [Pg.407]

In some breweries it is of extreme importance that the beer be absolutely sterile, and therefore it is necessary to use a sheet filter filtration in addition to the primary filtration. [Pg.26]

The U.S. military specification, M1L-P-27201B, requires 95% para content, 99.995% minimum hydrogen by difference, 50 vppm maximum total imputities, 9 vppm maximum combined nitrogen, water, and volatile hydrocarbons, 1 vppm maximum combined oxygen and argon, 39 vppm maximum helium, 1 vppm maximum carbon monoxide and dioxide, and a 10/40 micrometers nominal /absolute particulate filtration level. Liquid hydrogen is stored in double-walled vessels with evacuated pedite or multilayer insulation and transported in similarly insulated 50,000-L trailers or 900,000-L barges. [Pg.331]


See other pages where Absolute filtration is mentioned: [Pg.643]    [Pg.359]    [Pg.359]    [Pg.86]    [Pg.208]    [Pg.19]    [Pg.643]    [Pg.359]    [Pg.359]    [Pg.86]    [Pg.208]    [Pg.19]    [Pg.123]    [Pg.129]    [Pg.513]    [Pg.323]    [Pg.415]    [Pg.416]    [Pg.441]    [Pg.446]    [Pg.485]    [Pg.681]    [Pg.737]    [Pg.907]    [Pg.946]    [Pg.954]    [Pg.963]    [Pg.985]    [Pg.1004]    [Pg.120]    [Pg.10]    [Pg.139]    [Pg.139]    [Pg.142]    [Pg.413]    [Pg.1694]    [Pg.1722]   
See also in sourсe #XX -- [ Pg.86 ]




SEARCH



Absolute filters, cartridge filtration

Perpendicular-Flow Filtration (Absolute or Sterile)

© 2024 chempedia.info