Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Zeolites catalytic properties

Ab initio methods, 147-49 Acetate ion, decomposition, 135 Acetylene, interaction with palladium, tunneling spectroscopy, 435,437f Acid-dealuminated Y zeolites catalytical properties, 183 sorption, 175-78 Acid sites, on zeolites, 254 acidification effects, 266 Acoustic ringing, in NMR, elimination, 386 Active sites, nature, 104 Activity measurements, Co-Mo catalysts, 74 Adsorbed molecules,... [Pg.443]

A new dimension to acid-base systems has been developed with the use of zeolites. As illustrated in Fig. XVIII-21, the alumino-silicate faujasite has an open structure of interconnected cavities. By exchanging for alkali metal (or NH4 and then driving off ammonia), acid zeolites can be obtained whose acidity is comparable to that of sulfuric acid and having excellent catalytic properties (see Section XVIII-9D). Using spectral shifts, zeolites can be put on a relative acidity scale [195]. An important added feature is that the size of the channels and cavities, which can be controlled, gives selectivity in that only... [Pg.719]

Proceedingsof the Annual International AlChE Meeting, Washington, DC, November 27-December 2, 1988 edited by M.L. Occelli and R.G. Anthony Volume 51 NewSolid Acids and Bases. Their Catalytic Properties by K. Tanabe, M. Misono, Y. Ono and H. Hattori Volume 52 Recent Advances in Zeolite Science. Proceedings of the 1989 Meeting of the British Zeolite Association, Cambridge, April 17-19,1989 edited by J. Klinowsky and P.J. Barrie... [Pg.263]

The properties of the zeolite play a significant role in the overall performance of the catalyst. Understanding these properties increases our ability to predict catalyst response to changes in unit operation. From its inception in the catalyst plant, the zeolite must retain its catalytic properties under the hostile conditions of the FCC operation. The reaclor/regenerator environment can cause significant changes in chemical and structural composition of the zeolite. In the regenerator, for instance, the zeolite is subjected to thermal and hydrothermal treatments. In the reactor, it is exposed to feedstock contaminants such as vanadium and sodium. [Pg.88]

In the manufacturing of USY catalyst, the zeolite, clay, and binder are slurried together. If the binder is not active, an alumina component having catalytic properties may also be added. The well-mixed slurry solution is then fed to a spray dryer. The function of a spray dryer is to form microspheres by evaporating the slurry solution, through the use of atomizers, in the presence of hot air. The type of spray dr er and the drying conditions determine the size and distribution of catalyst particles. [Pg.99]

In the case of a catalytic membrane reactor (CMR), the membrane is (made) intrinsically catalytically active. This can be done by using the intrinsic catalytic properties of the zeolite or by making the membrane catalytically active. When an active phase is deposited on top of a membrane layer, this is also called a CMR because this becomes part of the composite membrane. In addition to the catalytic activity of the membrane, a catalyst bed can be present (PBCMR). The advantages of a CMR are as follows ... [Pg.217]

While the discovery of the catalytic properties of zeolites was driven by the desire to improve industrial prcKessing, the development of emission control catalysts was necessitated by governmental fiat. The first requirement was for 90+% removal of CO and of hydrocarbons, a goal which could not be met by oxidation with base metal oxides. To achieve the required spedfications during automobile operations, it was necessary to develop supported platinum catalysts. Originally the support was alumina in pellet form. Later platinum on cordierite was used in honeycomb form, containing 200-400 square channels per square inch. [Pg.71]

Oxide- and Zeolite-supported "Molecular" Metal Clusters Synthesis, Structure, Bonding, and Catalytic Properties... [Pg.211]

Gates BC (2005) Oxide- and Zeolite-supported Molecular Metal Clusters Synthesis, Structure, Bonding, and Catalytic Properties. 16 211-231 Gibson SE (nee Thomas), Keen SP (1998) Cross-Metathesis. 1 155-181 Gisdakis P, see Rosch N (1999) 4 109-163 Gdrling A, see Rosch N (1999) 4 109-163... [Pg.283]

When the metal nanoparticles are inserted into zeolite supercages, the size of the metal particles is confined according to the size of the supercage. However, after reduction of the precursor metal ions in a stream of hydrogen, the protons replacing the metal ions in the cation exchange position also interfere with the metal particles, influencing thereby their chemisorption and catalytic properties. [Pg.90]

Barthomeuf, D., Coudurier, G. and Vedrine, J.C. (1988) Basicity and basic catalytic properties of zeolites, Mater. Chem. Phys., 18, 553. [Pg.137]

CoSalen Y carries oxygen as a cargo.72 The catalytic properties of the zeolite-encapsulated metal complexes depend mainly on the complexed metal atoms, which are used usually as oxidation catalysts but other applications are also beginning to emerge. The zeolite-encapsulated catalysts can be regarded as biomimetic oxidation catalysts.73 In liquid-phase oxidation reactions catalyzed... [Pg.252]

The objective of this contribution is to investigate catalytic properties of zeolites differing in their channel systems in transformation of aromatics, i.e. toluene alkylation with isopropyl alcohol and toluene disproportionation. In the former case zeolite structure and acidity is related to the toluene conversion, selectivity to p-cymene, sum of cymenes, and isopropyl/n-propyl toluene ratio. In the latter one zeolite properties are... [Pg.273]

ITQ-21 presents excellent catalytic properties for the production of cumene, being more active and stable towards deactivation and presenting lower selectivity to NPB than a comparable beta zeolite. The benefits of ITQ-21 can be directly related to its open three-dimensional crystalline structure that favors diffusion of the products and minimizes undesired consecutive reactions. [Pg.336]

The present work reports the results obtained in the Friedel-Crafts acylation of different aromatic substrates catalyzed by zeolite Beta obtained according to a novel method based on the crystallization of silanized seeds, as a way to perturb the subsequent crystal growth step and to modify the zeolite textural properties [5], The catalytic behavior of this material is compared with that of the conventional Beta zeolite. [Pg.337]

Chromium zeolites are recognised to possess, at least at the laboratory scale, notable catalytic properties like in ethylene polymerization, oxidation of hydrocarbons, cracking of cumene, disproportionation of n-heptane, and thermolysis of H20 [ 1 ]. Several factors may have an effect on the catalytic activity of the chromium catalysts, such as the oxidation state, the structure (amorphous or crystalline, mono/di-chromate or polychromates, oxides, etc.) and the interaction of the chromium species with the support which depends essentially on the catalysts preparation method. They are ruled principally by several parameters such as the metal loading, the support characteristics, and the nature of the post-treatment (calcination, reduction, etc.). The nature of metal precursor is a parameter which can affect the predominance of chromium species in zeolite. In the case of solid-state exchange, the exchange process initially takes place at the solid- solid interface between the precursor salt and zeolite grains, and the success of the exchange depends on the type of interactions developed [2]. The aim of this work is to study the effect of the chromium precursor on the physicochemical properties of chromium loaded ZSM-5 catalysts and their catalytic performance in ethylene ammoxidation to acetonitrile. [Pg.345]

In recent years, there has been a growing interest in the synthesis and application of nano-scale zeolites. Zeolites with a crystal size smaller than 100 nm are the potential replacement for existing zeolite catalysts and can be used in novel environmentally benign catalytic processes. It is well known that the crystal size of zeolites has a great effect on their catalytic properties. The improved catalytic activity and selectivity as well as lower coke formation and better durability can be obtained over nano-sized zeolite crystals [2]. [Pg.373]

The method of metal introduction should significantly affect the degree of proximity between the Pt and acidic sites, hence the catalytic properties. In a previous study, the behavior of Pt/MCM-22 samples in n-hexane transformation was explored by Martins et al. [11]. In this study the same reaction was used in order to evaluate the influence of the mode of Pt introduction. Three 1 wt.% Pt/MCM-22 samples were prepared, differing by the mode of platinum introduction ion exchange, incipient wetness impregnation or mechanical mixture of the zeolite with Pt/Al203. [Pg.382]

Durable changes of the catalytic properties of supported platinum induced by microwave irradiation have been also recorded [29]. A drastic reduction of the time of activation (from 9 h to 10 min) was observed in the activation of NaY zeolite catalyst by microwave dehydration in comparison with conventional thermal activation [30]. The very efficient activation and regeneration of zeolites by microwave heating can be explained by the direct desorption of water molecules from zeolite by the electromagnetic field this process is independent of the temperature of the solid [31]. Interaction between the adsorbed molecules and the microwave field does not result simply in heating of the system. Desorption is much faster than in the conventional thermal process, because transport of water molecules from the inside of the zeolite pores is much faster than the usual diffusion process. [Pg.350]

The location of boron or aluminum sites in zeolites is of utmost importance to an understanding of the catalytic properties. Due to the inherent long-range disorder of the distribution of these sites in most zeolites, it is difficult to locate them by diffraction methods. The aforementioned methods to measure heteronuclear dipolar interactions can be utilized to determine the orientation between the organic SDA and A1 or B in the framework. The SDA location may be obtained by structure refinement or computational modeling. For catalytic reactions, the SDA must be removed from the pores system by calcination. [Pg.208]

The exceptional catalytic properties and structural features of zeolites are a powerful stimulus for both experimental and theoretical research. With the advent of the computer age and with the spectacular development of advanced quantum chemical computational methods in the last decade, one may expect that molecular quantum theory will find more and more practical and even industrial applications. The most rapid progress is expected to occur along the borderline of traditional experimental and theoretical chemistry, where experimental and computational (theoretical) methods can be combined in an efficient manner to solve a variety... [Pg.145]

The preparation methods of aluminum-deficient zeolites are reviewed. These methods are divided in three categories (a) thermal or hydrothermal dealumination (b) chemical dea-lumination and (c) combination of thermal and chemical dealumination. The preparation of aluminum-deficient Y and mordenite zeolites is discussed. The structure and physico-chemical characteristics of aluminum-deficient zeolites are reviewed. Results obtained with some of the more modern methods of investigation are presented. The structure, stability, sorption properties, infrared spectra, acid strength distribution and catalytic properties of these zeolites are discussed. [Pg.157]

These are some of the more important factors that should be considered in order to explain the catalytic activity of aluminum-deficient mordenite zeolites. In general, the same factors will affect the catalytic properties of aluminum-deficient Y zeolites, although fewer data are available with regard to the catalytic properties of these materials. [Pg.195]

In the present work ir, esr and microcalorimetry techniques were used to characterize the acid-base properties of acid ZSM-5 and ZSM-11 samples. Complementary studies by TEM, EDX-STEM and XPS were also carried out to determine the size and shape of zeolite particles and the A1 distribution within a particle. Catalytic properties for methanol conversion were also determined. [Pg.253]

Rhenium is one of the oxophilic atoms effective for oxidation reactions. ReOx species are likely to have chemical interaction with various oxide supports and exhibit unique catalytic properties that cannot be observed on monomeric rhenium oxides. A new active six-membered octahedral Re cluster in zeolite pores (H-ZSM-5 [HZ]) is produced from inactive [Re04] monomers in situ under selective propene oxidation to acrolein (C3H6+02 - CH2=CHCH0+H20) in the presence of ammonia that is not involved in the reaction equation [16], The cluster is transformed back to the original inactive monomer in the absence ammonia. Note that coexistence of spectator NH3 is indispensable for the selective oxidation. [Pg.246]


See other pages where Zeolites catalytic properties is mentioned: [Pg.110]    [Pg.110]    [Pg.588]    [Pg.347]    [Pg.168]    [Pg.48]    [Pg.227]    [Pg.285]    [Pg.71]    [Pg.452]    [Pg.59]    [Pg.85]    [Pg.125]    [Pg.381]    [Pg.561]    [Pg.61]    [Pg.27]    [Pg.233]    [Pg.182]    [Pg.183]    [Pg.193]    [Pg.193]    [Pg.443]    [Pg.348]   
See also in sourсe #XX -- [ Pg.182 ]

See also in sourсe #XX -- [ Pg.20 , Pg.136 , Pg.137 ]

See also in sourсe #XX -- [ Pg.2 , Pg.2 , Pg.2 , Pg.2 , Pg.2 , Pg.4 , Pg.6 , Pg.7 , Pg.14 , Pg.14 , Pg.14 , Pg.16 ]

See also in sourсe #XX -- [ Pg.136 , Pg.137 ]

See also in sourсe #XX -- [ Pg.2 , Pg.2 , Pg.2 , Pg.2 , Pg.2 , Pg.4 , Pg.6 , Pg.7 , Pg.14 , Pg.14 , Pg.14 ]




SEARCH



Catalytic Properties of the Zeolites

Catalytic properties

Catalytic properties, dealuminated zeolites

TREATED ZEOLITES, CATALYTIC PROPERTIES

Zeolite properties

© 2024 chempedia.info