Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

X-ray diffraction and

The fimctiong(ri is central to the modem theory of liquids, since it can be measured experimentally using neutron or x-ray diffraction and can be related to the interparticle potential energy. Experimental data [1] for two liquids, water and argon (iso-electronic with water) are shown in figure A2.4.1 plotted as a fiinction ofR = R /a, where a is the effective diameter of the species, and is roughly the position of the first maximum in g (R). For water, a = 2.82 A,... [Pg.561]

Tredgold R H, Allen R A and Hodge P 1987 X-ray-diffraction and optical studies of Langmuir-Blodgett films formed from azobenzene derivatives Thin Solid Films 155 343-52... [Pg.2631]

In 1971 the Protein Data Bank - PDB [146] (see Section 5.8 for a complete story and description) - was established at Brookhaven National Laboratories - BNL -as an archive for biological macromolccular cr7stal structures. This database moved in 1998 to the Research Collaboratory for Structural Bioinformatics -RCSB. A key component in the creation of such a public archive of information was the development of a method for effreient and uniform capture and curation of the data [147], The result of the effort was the PDB file format [53], which evolved over time through several different and non-uniform versions. Nevertheless, the PDB file format has become the standard representation for exchanging inacromolecular information derived from X-ray diffraction and NMR studies, primarily for proteins and nucleic acids. In 1998 the database was moved to the Research Collaboratory for Structural Bioinformatics - RCSB. [Pg.112]

TaF has been characterized by ir, Raman, x-ray diffraction, and mass spectrometry (3,11,12). TaF has been used as a superacid catalyst for the conversion of CH to gasoline-range hydrocarbons (qv) (12) in the manufacture of fluoride glass and fluoride glass optical fiber preforms (13), and incorporated in semiconductor devices (14). TaF is also a catalyst for the Hquid-phase addition of HF to polychlorinated ethenes (15). The chemistry of TaF has been reviewed (1,16—19). Total commercial production for TaF is thought to be no more than a few hundred kilograms aimuaHy. [Pg.252]

In addition, new technology developments, such as on-line Raman spectroscopy, x-ray diffraction and gc/lc are under commercialization for the 1990s. [Pg.397]

The melting points, optical rotations, and uv spectral data for selected prostanoids are provided in Table 1. Additional physical properties for the primary PGs have been summarized in the Hterature and the physical methods have been reviewed (47). The molecular conformations of PGE2 and PGA have been determined in the soHd state by x-ray diffraction, and special H and nuclear magnetic resonance (nmr) spectral studies of several PGs have been reported (11,48—53). Mass spectral data have also been compiled (54) (see Mass spectrometry Spectroscopy). [Pg.153]

Other methods of instmmental analysis include polarography, potentiometry, emission spectroscopy, x-ray diffraction, and x-ray fluorescence. [Pg.335]

X-rays provide an important suite of methods for nondestmctive quantitative spectrochemical analysis for elements of atomic number Z > 12. Spectroscopy iavolving x-ray absorption and emission (269—273) is discussed hereia. X-ray diffraction and electron spectroscopies such as Auger and electron spectroscopy for chemical analysis (esca) or x-ray photoelectron spectroscopy are discussed elsewhere (see X-raytechnology). [Pg.320]

Specific optical rotation values, [a], for starch pastes range from 180 to 220° (5), but for pure amylose and amylopectin fractions [a] is 200°. The stmcture of amylose has been estabUshed by use of x-ray diffraction and infrared spectroscopy (23). The latter analysis shows that the proposed stmcture (23) is consistent with the proposed ground-state conformation of the monomer D-glucopyranosyl units. Intramolecular bonding in amylose has also been investigated with nuclear magnetic resonance (nmr) spectroscopy (24). [Pg.341]

Numerous methods have been pubUshed for the determination of trace amounts of tellurium (33—42). Instmmental analytical methods (qv) used to determine trace amounts of tellurium include atomic absorption spectrometry, flame, graphite furnace, and hydride generation inductively coupled argon plasma optical emission spectrometry inductively coupled plasma mass spectrometry neutron activation analysis and spectrophotometry (see Mass spectrometry Spectroscopy, optical). Other instmmental methods include polarography, potentiometry, emission spectroscopy, x-ray diffraction, and x-ray fluorescence. [Pg.388]

The mechanisms of lead corrosion in sulfuric acid have been studied and good reviews of the Hterature are available (27—30). The main techniques used in lead corrosion studies have been electrochemical measurements, x-ray diffraction, and electron microscopy. More recendy, laser Raman spectroscopy and photoelectrochemistry have been used to gain new insight into the corrosion process (30,31). [Pg.574]

The simplest analytical procedure is to oxidize a sample in air below the fusion point of the ash. The loss on ignition is reported as graphitic carbon. Refinements are deterrninations of the presence of amorphous carbon by gravity separation with ethylene bromide, or preferably by x-ray diffraction, and carbonates by loss of weight on treating with nitric acid. Corrections for amorphous carbon and carbonates are appHed to the ignition data, but loss of volatile materials and oxidation may introduce errors. [Pg.574]

D. M. Moore and R. C. Reynolds, Jr., X-ray Diffraction and the Identification and Analysis of Clay Minerals, Oxford University Press, Oxford, UK, 1989. [Pg.201]

The situation is different for other examples—for example, the peptide hormone glucagon and a small peptide, metallothionein, which binds seven cadmium or zinc atoms. Here large discrepancies were found between the structures determined by x-ray diffraction and NMR methods. The differences in the case of glucagon can be attributed to genuine conformational variability under different experimental conditions, whereas the disagreement in the metallothionein case was later shown to be due to an incorrectly determined x-ray structure. A re-examination of the x-ray data of metallothionein gave a structure very similar to that determined by NMR. [Pg.391]

Some of the techniques included apply more broadly than just to surfaces, interfaces, or thin films for example X-Ray Diffraction and Infrared Spectroscopy, which have been used for half a century in bulk solid and liquid analysis, respectively. They are included here because they have by now been developed to also apply to surfaces. A few techniques that are applied almost entirely to bulk materials (e.g.. Neutron Diffraction) are included because they give complementary information to other methods or because they are referred to significantly in the 10 materials volumes in the Series. Some techniques were left out because they were considered to be too restricted to specific applications or materials. [Pg.764]

It is beyond the scope of this chapter to review structure and bonding in each class of engineering carbons listed in Table 5. Instead, a generic description of microstructure and bonding in these materials will be attempted. The evolution in understanding of the structure of engineering carbons and graphites has followed the initial application of X-ray diffraction and subsequent application... [Pg.21]

Powder X-ray diffraction and SAXS were employed here to explore the microstructure of hard carbon samples with high capacities. Powder X-ray diffraction measurements were made on all the samples listed in Table 4. We concentrate here on sample BrlOOO, shown in Fig. 27. A weak and broad (002) Bragg peak (near 22°) is observed. Well formed (100) (at about 43.3°) and (110) (near 80°) peaks are also seen. The sample is predominantly made up of graphene sheets with a lateral extension of about 20-30A (referring to Table 2, applying the Scherrer equation to the (100) peaks). These layers are not stacked in a parallel fashion, and therefore, there must be small pores or voids between them. We used SAXS to probe these pores. [Pg.378]

Metallurgists originally, and now materials scientists (as well as solid-state chemists) have used erystallographic methods, certainly, for the determination of the structures of intermetallic compounds, but also for such subsidiary parepistemes as the study of the orientation relationships involved in phase transformations, and the study of preferred orientations, alias texture (statistically preferential alignment of the crystal axes of the individual grains in a polycrystalline assembly) however, those who pursue such concerns are not members of the aristocracy The study of texture both by X-ray diffraction and by computer simulation has become a huge sub-subsidiary field, very recently marked by the publication of a major book (Kocks el al. 1998). [Pg.177]

In addition to the perfluoroalkylzinc compounds, the zinc reagent formed from 1,1,1-trifluorotrichloroethane has received considerable attention. This zinc compound was first reported as a stable ether complex [56]. Later, the DMF complex was isolated and the structure was determined by X-ray diffraction and shown to be monomeric [57] (equation 50). This zinc reagent undergoes a variety of functionalization reactions, and some typical examples are illustrated in Table 2 [47, 58, 59, 60, 61] The alcohol products (Table 2) can be converted to AiCF=CXCF3 (X = Cl, F) by further reaction with diethylaminosulfur trifluoride (DAST) and l,8-diazabicyclo[5 4.0]undec-7-ene (DBU) [60]... [Pg.681]

The phase behavior of polybibenzoates has been investigated mainly by DSC, variable-temperature x-ray diffraction, and optical microscopy. However, only the first two techniques are useful in the case of polymers with the high-molecular weights required for materials with good mechanical properties and, in such cases, revealing textures are not usually observed by optical microscopy. [Pg.384]

Figure 5. LRO-parameter S versus temperature as determined by X-ray diffraction and as calculated from resistivity measurement for CujoPtso (fit-parameter in eqn(3) A=0 7) ( ) X-rays, ( ) resistivity The curve is calculated with the Foumet model taking for the interaction energies W =720k and W2=1220k ... Figure 5. LRO-parameter S versus temperature as determined by X-ray diffraction and as calculated from resistivity measurement for CujoPtso (fit-parameter in eqn(3) A=0 7) ( ) X-rays, ( ) resistivity The curve is calculated with the Foumet model taking for the interaction energies W =720k and W2=1220k ...
The phase composition of products obtained from the thermal treatment of LiNbOF4 and NaNbOF4 was investigated using X-ray diffraction and vibration spectroscopy, as reported in [379]. Compounds with the following structures were found M2NbOF5, MNb02F2 and MNbC>3, where M = Li or Na. [Pg.202]

Figure 6-12. Model for Ihe Calculation of the van der Waals potential experienced by a single T6 molecule on a Tfi ordered surface. Each molecule is modeled as a chain of 6 polarizable spherical units, and the surface as 8-laycr slab, each layer containing 266 molecules (only pan of the cluster is shown). Tire model is based on X-ray diffraction and dielectric constant experimental data. The two configurations used for evaluating the corrugation of the surface potential are shown. Adapted with permission front Ref. [48]. Figure 6-12. Model for Ihe Calculation of the van der Waals potential experienced by a single T6 molecule on a Tfi ordered surface. Each molecule is modeled as a chain of 6 polarizable spherical units, and the surface as 8-laycr slab, each layer containing 266 molecules (only pan of the cluster is shown). Tire model is based on X-ray diffraction and dielectric constant experimental data. The two configurations used for evaluating the corrugation of the surface potential are shown. Adapted with permission front Ref. [48].

See other pages where X-ray diffraction and is mentioned: [Pg.395]    [Pg.302]    [Pg.566]    [Pg.1791]    [Pg.2757]    [Pg.124]    [Pg.368]    [Pg.77]    [Pg.308]    [Pg.303]    [Pg.287]    [Pg.395]    [Pg.228]    [Pg.38]    [Pg.70]    [Pg.100]    [Pg.362]    [Pg.161]    [Pg.296]    [Pg.182]    [Pg.183]    [Pg.193]    [Pg.53]    [Pg.74]    [Pg.135]    [Pg.225]    [Pg.290]   
See also in sourсe #XX -- [ Pg.349 ]




SEARCH



Basics of crystal structure and X-ray diffraction

Combination of DSC and X-ray Diffraction

Configuration and conformation, elucidation by X-ray diffraction

Crystal symmetry and X-ray diffraction

Crystals X ray diffraction and

Diffraction and Other X-Ray Methods

Diffraction of electrons, neutrons and X-rays

Diffraction of x-rays and electrons

Diffraction with electrons, X-rays, and atoms

Electron and X-Ray Diffraction Studies

Electron and X-Ray Diffraction Studies of 1,2,3,5-Dithiadiazolyl Radicals

Kinematic and Geometric Theories of X-ray Diffraction

NMR and X-ray diffraction

Powder X-ray diffraction and crystal identification

Recent developments and prospects of X-ray powder diffraction methods

Reciprocal Lattice and X-Ray Diffraction

Results of X-ray and electron diffraction studies

Small Angle X-ray Diffraction Scattering and Positron Annihilation Lifetime Spectroscopy

Small-angle Neutron and X-ray Diffraction

Spectroscopic and X-Ray Diffraction Analysis

Spectroscopy, x-ray diffraction and

Structure Analysis and X-Ray Diffraction

Structure and X-ray diffraction Some examples

Summary of X-ray Diffraction and Interference Effects

Wide-Angle X-Ray Diffraction Line-Broadening for Crystallite Size and Strain

Wide-angle X-ray diffraction and

X-Ray Diffraction and EELS

X-Ray Diffraction and EXAFS Analysis

X-Ray Diffraction and Protein Structure

X-Ray Diffraction and Reflectivity

X-Ray Diffraction from Surfaces and Interfaces

X-Ray and Diffraction on Crystals

X-Ray and Neutron Diffraction Crystallography

X-Ray and Neutron Diffraction Experiments

X-Ray diffraction, elucidation of structural formula, configuration, and conformation

X-ray Diffraction and Scattering

X-ray and Neutron Powder Diffraction

X-ray and neutron diffraction patterns

X-ray and neutron diffractions

X-ray diffraction and differential

X-ray diffraction and differential scanning calorimetry

X-ray diffraction and microstructure of slags

X-ray diffraction and structure

X-ray diffraction data and

X-ray diffraction pattern, densities and other data

X-ray reflection and diffraction

© 2024 chempedia.info