Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Immersion wetting

Table 1.3. Enthalpies of wetting (= immersion) for some solid-liquid pairs. Given is in mJ m at 25°C. Table 1.3. Enthalpies of wetting (= immersion) for some solid-liquid pairs. Given is in mJ m at 25°C.
Samples used in microscopes can be placed on the slide dry or wet. Typical liquids used for wet-immersion are non-aqueous based like Nujol (International Crystal Laboratories, Garfield, New Jersey, U.S.A.), which is liquid paraffin, or Sirax, which is cedar wood oil. Again, there are many practical aspects of preparing samples for microscopy and the requirement of proper microscope settings can be found in Refs. 7, 9, 40. [Pg.70]

All the hoards were tested under dry (normal) condition and wet (immersion) condition according to European Norm EN 314 1993 Plywood-Bonding Quality (Part 1 Test Methods). As for immersion test, the specimens were soaked in water for 24 h at 20 °C. [Pg.150]

Otherwise, where access is possible, the established methodologies of gas-phase adsorption, heat of wetting (immersion) and traditional density measurements may suffice. [Pg.195]

In the standard method, the metal enclosure (called the air chamber) used to hold the hydrocarbon vapors is immersed in water before the test, then drained but not dried. This mode of operation, often designated as the wet bomb" is stipulated for all materials that are exclusively petroleum. But if the fuels contain alcohols or other organic products soluble in water, the apparatus must be dried in order that the vapors are not absorbed by the water on the walls. This technique is called the dry bomb" it results in RVP values higher by about 100 mbar for some oxygenated motor fuels. When examining the numerical results, it is thus important to know the technique employed. In any case, the dry bomb method is preferred. [Pg.189]

Let us consider one more physical phenomenon, which can influence upon PT sensitivity and efficiency. There is a process of liquid s penetration inside a capillary, physical nature of that is not obvious up to present time. Let us consider one-side-closed conical capillary immersed in a liquid. If a liquid wets capillary wall, it flows towards cannel s top due to capillary pressure pc. This process is very fast and capillary imbibition stage is going on until the liquid fills the channel up to the depth l , which corresponds the equality pcm = (Pc + Pa), where pa - atmospheric pressure and pcm - the pressure of compressed air blocked in the channel. [Pg.615]

The heat of immersion is measured calorimetrically with finely divided powders as described by several authors [9,11-14] and also in Section XVI-4. Some hi data are given in Table X-1. Polar solids show large heats of immersion in polar liquids and smaller ones in nonpolar liquids. Zetdemoyer [15] noted that for a given solid, hi was essentially a linear function of the dipole moment of the wetting liquid. [Pg.349]

Fig. X-11. Heats of wetting from 0 ( ) and calorimetric heats of immersion (O) of PTFE in n-alkanes. (From Ref. 67.)... Fig. X-11. Heats of wetting from 0 ( ) and calorimetric heats of immersion (O) of PTFE in n-alkanes. (From Ref. 67.)...
In contrast to tire preparation of LB films, tliat of SAMs is fairly simple and no special equipment is required. The inorganic substrate is simply immersed into a dilute solution of tire surface active material in an organic solvent (typically in tire mM range) and removed after an extended period ( 24 h). Subsequently, tire sample is rinsed extensively witli tire solvent to remove any excess material (wet chemical preparation). [Pg.2622]

Hydrolysis of benzyl cyanide to phenylacetamide. In a 1500 ml. three-necked flask, provided with a thermometer, reflux condenser and efficient mechanical stirrer, place 100 g. (98 ml.) of benzyl]cyanide and 400 ml. of concentrated hydrochloric acid. Immerse the flask in a water bath at 40°. and stir the mixture vigorously the benzyl cyanide passes into solution within 20-40 minutes and the temperature of the reaction mixture rises to about 50°, Continue the stirring for an additional 20-30 minutes after the mixture is homogeneous. Replace the warm water in the bath by tap water at 15°, replace the thermometer by a dropping funnel charged with 400 ml. of cold distilled water, and add the latter with stirring crystals commence to separate after about 50-75 ml. have been introduced. When all the water has been run in, cool the mixture externally with ice water for 30 minutes (1), and collect the crude phenylacetamide by filtration at the pump. Remove traces of phenylacetic acid by stirring the wet sohd for about 30 minutes with two 50 ml. portions of cold water dry the crystals at 50-80°. The yield of phenylacetamide, m.p. 154-155°, is 95 g. RecrystaUisation from benzene or rectified spirit raises the m.p. to 156°. [Pg.762]

Froth flotation (qv) is a significant use of foam for physical separations. It is used to separate the more precious minerals from the waste rock extracted from mines. This method reHes on the different wetting properties typical for the different extracts. Usually, the waste rock is preferentially wet by water, whereas the more valuable minerals are typically hydrophobic. Thus the mixture of the two powders are immersed in water containing foam promoters. Also added are modifiers which help ensure that the surface of the waste rock is hydrophilic. Upon formation of a foam by bubbling air and by agitation, the waste rock remains in the water while the minerals go to the surface of the bubbles, and are entrapped in the foam. The foam rises, bringing... [Pg.431]

In the wet system, manufacture proceeds as foUows (/) a 7—20% polyurethane solution of DMF is appHed onto a fabric and immersed in water containing 0—10% of DMF for coagulation (2) the coated fabric is washed and dried (4) the surface is finished by the dry system. For the substrate, a woven or knit fabric which has been bmshed on its surface is often used to improve appearance, resistance to grain break, and feel. [Pg.93]

Water Tests. In colorfastness to water, ISO 10S-E01, the test specimen is placed in contact with the chosen adjacent fabrics, immersed in water, and placed wet between glass plates and left for 4 h at 37°C. After drying, the effect on the test specimen and stain on adjacents are assessed. The test, colorfastness to seawater, ISO 10S-E02, is the same as EOl but uses 30 g/L anhydrous sodium chloride solution instead of water. To test for colorfastness to chlorinated seawater/swimming baths water, ISO 10S-E03, the specimen is immersed in sodium hypochlorite solution containing either 100, 50, or 20 mg of active chlorine per Hter at pH 7.5 for 1 h at 27°C, rinsed, dried, and assessed. [Pg.376]

Vertical Pumps In the chemical industiy, the term vertical process pump (Fig. 10-40) generally applies to a pump with a vertical shaft having a length from drive end to impeller of approximately 1 m (3.1 ft) minimum to 20 m (66 ft) or more. Vertical pumps are used as either wet-pit pumps (immersed) or dry-pit pumps (externally mounted) in conjunction with stationaiy or mobile tanlcj... [Pg.907]

Rider and Amott were able to produce notable improvements in bond durability in comparison with simple abrasion pre-treatments. In some cases, the pretreatment improved joint durability to the level observed with the phosphoric acid anodizing process. The development of aluminum platelet structure in the outer film region combined with the hydrolytic stability of adhesive bonds made to the epoxy silane appear to be critical in developing the bond durability observed. XPS was particularly useful in determining the composition of fracture surfaces after failure as a function of boiling-water treatment time. A key feature of the treatment is that the adherend surface prepared in the boiling water be treated by the silane solution directly afterwards. Given the adherend is still wet before immersion in silane solution, the potential for atmospheric contamination is avoided. Rider and Amott have previously shown that such exposure is detrimental to bond durability. [Pg.427]


See other pages where Immersion wetting is mentioned: [Pg.127]    [Pg.173]    [Pg.217]    [Pg.134]    [Pg.248]    [Pg.78]    [Pg.428]    [Pg.110]    [Pg.134]    [Pg.131]    [Pg.352]    [Pg.127]    [Pg.173]    [Pg.217]    [Pg.134]    [Pg.248]    [Pg.78]    [Pg.428]    [Pg.110]    [Pg.134]    [Pg.131]    [Pg.352]    [Pg.411]    [Pg.187]    [Pg.44]    [Pg.130]    [Pg.130]    [Pg.154]    [Pg.20]    [Pg.126]    [Pg.259]    [Pg.442]    [Pg.442]    [Pg.443]    [Pg.396]    [Pg.195]    [Pg.293]    [Pg.23]    [Pg.101]    [Pg.526]    [Pg.534]    [Pg.369]    [Pg.148]    [Pg.265]    [Pg.85]    [Pg.218]   
See also in sourсe #XX -- [ Pg.14 ]




SEARCH



Immersed

Immersion

© 2024 chempedia.info