Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water vapor behavior

The corrosion behavior of plutonium metal has been summarized (60,61). a-Plutonium oxidizes very slowly in dry air, typically <10 mm/yr. The rate is accelerated by water vapor. Thus, a bright metal surface tarnishes rapidly in normal environments and a powdery surface soon forms. Eventually green PUO2 [12059-95-9] covers the surface. Plutonium is similar to uranium with respect to corrosion characteristics. The stabilization of 5-Pu confers substantial corrosion resistance to Pu in the same way that stabilization of y-U yields a more corrosion-resistant metal. The reaction of Pu metal with Hquid water produces both oxides and oxide-hydrides (62). The reaction with water vapor above 100°C also produces oxides and hydride (63). [Pg.196]

Many factors affect the mechanisms and kinetics of sorption and transport processes. For instance, differences in the chemical stmcture and properties, ie, ionizahility, solubiUty in water, vapor pressure, and polarity, between pesticides affect their behavior in the environment through effects on sorption and transport processes. Differences in soil properties, ie, pH and percentage of organic carbon and clay contents, and soil conditions, ie, moisture content and landscape position climatic conditions, ie, temperature, precipitation, and radiation and cultural practices, ie, crop and tillage, can all modify the behavior of the pesticide in soils. Persistence of a pesticide in soil is a consequence of a complex interaction of processes. Because the persistence of a pesticide can govern its availabiUty and efficacy for pest control, as weU as its potential for adverse environmental impacts, knowledge of the basic processes is necessary if the benefits of the pesticide ate to be maximized. [Pg.219]

A third screening smoke-type is white phosphoms [7723-14-0] (WP), P (see Phosphorus and THE phosphides), which reacts spontaneously with air and water vapor to produce a dense cloud of phosphoms pentoxide [1314-56-3]. An effective screen is obtained as the P2O5 hydrolyzes to form droplets of dilute phosphoric acid aerosol. WP produces smoke in great quantity, but it has certain disadvantages. Because WP has such a high heat of combustion, the smoke it produces from bulk-filled munitions has a tendency to rise in pillarlike mass. This behavior too often nullifies the screening effect, particularly in stiU air. Also, WP is very brittle, and the exploding munitions in which it is used break it into very small particles that bum rapidly. [Pg.401]

Absolute humidity H equals the pounds of water vapor carried by 1 lb of diy air. If ideal-gas behavior is assumed, H = M p/[M P — p)], where M,, = molecular weight of water = molecular weight of air p = partial pressure of water vapor, atm and P = total pressure, atm. [Pg.1151]

Relative humidity and dew point can be determined for other than atmospheric pressure from the partial pressure of water in the mixture and from the vapor pressure of water vapor. The partial pressure of water is calculated, if ideal-gas behavior is assumed, as... [Pg.1161]

The pressure behavior shown in Figure 4-3 is readily explained in terms of the kinetic theory of gases. There is so much space between the molecules that each behaves independently, contributing its share to the total pressure through its occasional collisions with the container walls. The water molecules in the third bulb are seldom close to each other or to molecules provided by the air. Consequently, they contribute to the pressure exactly the same amount they do in the second bulb—the pressure they would exert if the air were not present. The 0.0011 mole of water vapor contributes 20 mm of pressure whether the air is there or not. The 0.0050 mole of air contributes 93 mm of pressure whether the water vapor is there or not. Together, the two partial pressures, 20 mm and 93 mm, determine the measured total pressure. [Pg.56]

Multilayered materials owe their properties and behavior to the properties of and the interactions between the components (5). Each of the two or more components contributes its particular property to the total performance of the multilayered material. For example, in Pouch 1, Table II, the aluminum foil provides high oxygen and water vapor permeability resistance, poly (ethylene terephthalate) provides structural strength and stiffness, and the ethylene-butene copolymer provides a heat sealable layer. If the components of the multilayered materials interact then the whole would be something different than the sum of its parts. In other words, the properties of the components of the multilayered materials are not independent of one another but rather are interdependent. [Pg.97]

The turnover time of water vapor in the atmosphere obviously is a function of latitude and altitude. In the equatorial regions, its turnover time in the atmosphere is a few days, while water in the stratosphere has a turnover time of one year or more. Table 7-1 Qunge, 1963) provides an estimate of the average residence time for water vapor for various latitude ranges in the troposphere. Given this simple picture of vertical structure, motion, transport, and diffusion, we can proceed to examine the behavior of... [Pg.141]

The total mass of the ash plus the carbon dioxide plus the water vapor is equal to the total mass of the log plus the oxygen. As always, the law of conservation of matter is obeyed as precisely as chemists can measure. The law of conservation of mass is fundamental to the understanding of chemical reactions. Other laws related to the behavior of matter are equally important, and learning how to apply these laws correctly is a necessary goal of the study of chemistry. [Pg.7]

In Dalton s law problems, what is the difference in the behavior of water vapor mixed with air and helium mixed with air ... [Pg.199]

The effect of physical aging on the crystallization state and water vapor sorption behavior of amorphous non-solvated trehalose was studied [91]. It was found that annealing the amorphous substance at temperatures below the glass transition temperature caused nucleation in the sample that served to decrease the onset temperature of crystallization upon subsequent heating. Physical aging caused a decrease in the rate and extent of water vapor adsorption at low relative humidities, but water sorption could serve to remove the effects of physical aging due to a volume expansion that took place in conjunction with the adsorption process. [Pg.275]

The above behavior of narrow-pore supported cobalt catalysts toward co-fed water can also be explained in terms of relative size of cobalt clusters, pore network of support, expected location of cobalt clusters within the pore network, and relative differences in the residence time of water vapor within and outside the... [Pg.259]

The major differences between behavior profiles of organic chemicals in the environment are attributable to their physical-chemical properties. The key properties are recognized as solubility in water, vapor pressure, the three partition coefficients between air, water and octanol, dissociation constant in water (when relevant) and susceptibility to degradation or transformation reactions. Other essential molecular descriptors are molar mass and molar volume, with properties such as critical temperature and pressure and molecular area being occasionally useful for specific purposes. A useful source of information and estimation methods on these properties is the handbook by Boethling and Mackay (2000). [Pg.3]

A number of factors must be taken into account when the diagrammatic representation of mixed proton conductivity is attempted. The behavior of the solid depends upon the temperature, the dopant concentration, the partial pressure of oxygen, and the partial pressure of hydrogen or water vapor. Schematic representation of defect concentrations in mixed proton conductors on a Brouwer diagram therefore requires a four-dimensional depiction. A three-dimensional plot can be constructed if two variables, often temperature and dopant concentration, are fixed (Fig. 8.18a). It is often clearer to use two-dimensional sections of such a plot, constructed with three variables fixed (Fig. 8.18h-8.18<7). [Pg.387]

The hydration behavior of DPPS (Tc = 55 °C) LB films is shown in Figure 13. The DPPS LB film having phosphoserine head groups little hydrated (Am = 600 10 ng, 20 mol of water per lipid) even near the phase transition temperature. Hydration ability has been reported from adsorption experiments of water vapor to lipid powder to be in the order of PC > PE > PS lipids [43], It has been determined from calorimetry that the amount of non-frozen water around lipid molecules is 10 mol, 7-8 mol, and 0 mol for 1 mol of PC, PE, and PS lipids, respectively [44]. This tendency is consistent with our results that PC molecules are easily hydrated and flaked from the substrate, and PE and... [Pg.140]

J. Andersson, R.A. Erck, and A. Erdemir, Frictional Behavior of Diamondlike Carbon Films in Vacuum and under Varying Water Vapor Pressure, Surf. Coat. Technology 163-164,535-540 (2003). [Pg.186]

Three series of LaCoi. CuxOs, LaMni.xCuxOs, LaFei x(Cu, Pd)x03 perovskites prepared by reactive grinding were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), temperature programmed desorption (TPD) of O2, NO + O2, and CsHg in the absence or presence of H2O, Fourier transform infrared (FTIR) spectroscopy as well as activity evaluations without or with 10% steam in the feed. This research was carried out with the objective to investigate the water vapor effect on the catalytic behavior of the tested perovskites. An attempt to propose a steam deactivation mechanism and to correlate the water resistance of perovskites with their properties has also been done. [Pg.32]

Mays and Brady 17) have published preliminary measurements of water adsorbed on rutile (Ti02) at 77°K, 195°K and 300°K for several different coverages. Zimmerman and co-workers 18) have made extensive magnetic resonance (spin-echo) measurements of protons of water vapor adsorbed on silica gel. Transverse and longitudinal relaxation times have been measured at room temperature at many different surface coverages and a two-phase behavior of the adsorbed water has been observed. [Pg.33]

Figure 15.4 Water vapor permeability behavior of TPS/clay hybrids of different kinds of clays at 24°C. (Reproduced with permission from Park et al., 2002, Wiley-VCH Verlag GmbH Co. KGaA). Figure 15.4 Water vapor permeability behavior of TPS/clay hybrids of different kinds of clays at 24°C. (Reproduced with permission from Park et al., 2002, Wiley-VCH Verlag GmbH Co. KGaA).

See other pages where Water vapor behavior is mentioned: [Pg.240]    [Pg.244]    [Pg.409]    [Pg.382]    [Pg.171]    [Pg.47]    [Pg.1133]    [Pg.680]    [Pg.72]    [Pg.246]    [Pg.356]    [Pg.278]    [Pg.67]    [Pg.265]    [Pg.410]    [Pg.389]    [Pg.195]    [Pg.193]    [Pg.452]    [Pg.299]    [Pg.111]    [Pg.524]    [Pg.244]    [Pg.25]    [Pg.237]    [Pg.239]    [Pg.240]    [Pg.5]    [Pg.29]    [Pg.316]    [Pg.325]    [Pg.393]   
See also in sourсe #XX -- [ Pg.629 ]




SEARCH



Water vapor

Water vaporization

© 2024 chempedia.info