Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water potassium and

As with other metals of the alkali group, it decomposes in water with the evolution of hydrogen. It catches fire spontaneously on water. Potassium and its salts impart a violet color to flames. [Pg.46]

Thiazides and the related diuretics inhibit the transport of sodium in the early distal tubules, which results in the enhanced elimination of sodium, chloride, and water. Potassium and sodium bicarbonate elimination is also enhanced calcium excretion is decreased, uric acid is retained. Glomerular filtration rate is decreased. The antihypertensive effects may be the result of direct arteriolar dilation but the full mechanism has not been identified. [Pg.2562]

Intracellular fluid makes up 30-40% of body weight, or about two-thirds of total body water. Potassium and magnesium are the predominant cations. The anions are mainly proteins and organic phosphates, with chloride and bicarbonate at low concentrations. [Pg.929]

It is one of the most reactive and electropositive of the metals. Except for lithium, it is the lightest known metal. It is soft, easily cut with a knife, and is silvery in appearance immediately after a fresh surface is exposed. It rapidly oxidizes in air and must be preserved in a mineral oil, such as kerosene. As with other metals of the alkali group, it decomposes in water with the evolution of hydrogen. It catches fire spontaneously on water. Potassium and its salts impart a violet color to flames. [Pg.33]

Anhydrous ammonia and aqueous phosphoric acid are sometimes applied directly and simultaneously to the soil to provide N and P. Ammonium polyphosphate can be added to irrigation water. Potassium and phosphorus can be supplied together as KH2PO4, K2HPO4, (KP03) or MgKP04. [Pg.1031]

In water pollution studies, the oxygen content can be measured by making the water alkaline and shaking a measured volume with an oxygen-free solution containing Mn- (aq). The solution is acidified with sulphuric acid, potassium iodide added and the liberated iodine titrated with sodium thiosulphate. [Pg.389]

Prepare a mixture of 30 ml, of aniline, 8 g. of o-chloro-benzoic acid, 8 g. of anhydrous potassium carbonate and 0 4 g. of copper oxide in a 500 ml. round-bottomed flask fitted with an air-condenser, and then boil the mixture under reflux for 1 5 hours the mixture tends to foam during the earlier part of the heating owing to the evolution of carbon dioxide, and hence the large flask is used. When the heating has been completed, fit the flask with a steam-distillation head, and stcam-distil the crude product until all the excess of aniline has been removed. The residual solution now contains the potassium. V-phenylanthrani-late add ca. 2 g. of animal charcoal to this solution, boil for about 5 minutes, and filter hot. Add dilute hydrochloric acid (1 1 by volume) to the filtrate until no further precipitation occurs, and then cool in ice-water with stirring. Filter otT the. V-phcnylanthranilic acid at the pump, wash with water, drain and dry. Yield, 9-9 5 g. I he acid may be recrystallised from aqueous ethanol, or methylated spirit, with addition of charcoal if necessary, and is obtained as colourless crystals, m.p. 185-186°. [Pg.217]

Add 5 g. of powdered potassium cyanide to a mixture of 20 ml. of water and 50 ml. of ethanol contained in a 200 ml. conical flask, and then add 25 mi. (26 g.) of freshly distilled benzaldehyde. Fit the flask with a reflux water-condenser, and boil the mixture gently on a water-bath for 30 minutes, a clear solution being rapidly obtained. Then pour the solution into a beaker and cool the benzoin separates as a crystalline mass... [Pg.233]

Oxidation, (i) Dissolve 5 g. of potassium dichromate in 20 ml. of dil. H2SO4 in a 100 ml. bolt-head flask. Cool and add 1 ml. of methanol. Fit the flask with a reflux water-condenser and warm gently a vigorous reaction soon occurs and the solution turns green. The characteristic pungent odour of formaldehyde is usually detected at this stage. Continue to heat for 3 minutes and then fit the flask with a knee-tube (Fig. 59, p. 100) and distil off a few ml. Test the distillate with blue litmus-paper to show that it is definitely acid. Then apply Test 3 p. 350) for formic acid. (The reflux-distillation apparatus (Fig. 38, p. 63) can conveniently be used for this test.)... [Pg.335]

Dibromobutane (from 1 4-butanediol). Use 45 g. of redistilled 1 4-butanediol, 6-84 g. of purified red phosphorus and 80 g. (26 ml.) of bromine. Heat the glycol - phosphorus mixture to 100-150° and add the bromine slowly use the apparatus of Fig. Ill, 37, 1. Continue heating at 100-150° for 1 hour after all the bromine has been introduced. Allow to cool, dilute with water, add 100 ml. of ether, and remove the excess of red phosphorus by filtration. Separate the ethereal solution of the dibromide, wash it successively with 10 per cent, sodium thiosulphate solution and water, then dry over anhydrous potassium carbonate. Remove the ether on a water bath and distil the residue under diminished pressure. Collect the 1 4-dibromobutane at 83-84°/12 mm. the yield 3 73 g. [Pg.283]

Equip a 1-litre three-necked flask with a mechanical stirrer, a separatory funnel and a thermometer. Place a solution of 47 g. of sodium cyanide (or 62 g. of potassium cyanide) in 200 ml. of water in the flask, and introduce 58 g. (73-5 ml.) of pure acetone. Add slowly from the separatory fumiel, with constant stirring, 334 g. (275 ml.) of 30 per cent, sulphuric acid by weight. Do not allow the temperature to rise above 15-20° add crushed ice, if necessary, to the mixture by momentarily removing the thermometer. After all the acid has been added continue the stirring for 15 minutes. Extract the reaction mixture with three 50 ml. portions of ether, dry the ethereal extracts with anhydrous sodium or magnesium sulphate, remove most of the ether on a water bath and distil the residue rapidly under diminished pressure. The acetone cyanohydrin passes over at 80-82°/15 mm. The yield is 62 g. [Pg.348]

IsoValeric acid. Prepare dilute sulphuric acid by adding 140 ml. of concentrated sulphuric acid cautiously and with stirring to 85 ml. of water cool and add 80 g. (99 ml.) of redistilled woamyl alcohol. Place a solution of 200 g. of crystallised sodium dicliromate in 400 ml. of water in a 1-litre (or 1-5 litre) round-bottomed flask and attach an efficient reflux condenser. Add the sulphuric acid solution of the isoamyl alcohol in amaU portions through the top of the condenser shake the apparatus vigorously after each addition. No heating is required as the heat of the reaction will suffice to keep the mixture hot. It is important to shake the flask well immediately after each addition and not to add a further portion of alcohol until the previous one has reacted if the reaction should become violent, immerse the flask momentarily in ice water. The addition occupies 2-2-5 hours. When all the isoamyl alcohol has been introduced, reflux the mixture gently for 30 minutes, and then allow to cool. Arrange the flask for distillation (compare Fig. II, 13, 3, but with the thermometer omitted) and collect about 350 ml. of distillate. The latter consists of a mixture of water, isovaleric acid and isoamyl isovalerate. Add 30 g. of potassium not sodium) hydroxide pellets to the distillate and shake until dissolved. Transfer to a separatory funnel and remove the upper layer of ester (16 g.). Treat the aqueous layer contained in a beaker with 30 ml. of dilute sulphuric acid (1 1 by volume) and extract the liberated isovaleric acid with two... [Pg.355]

Benzoyl piperidine. In a 1-litre three-necked flask, equipped with a mechanical stirrer, separatory funnel and a thermometer, place 85 g. (99 ml.) of redistilled piperidine (b.p. 105-108°) and a solution of 53 g. of sodium hydroxide in 400 ml. of water. Stir the mixture and introduce during the course of 1 hour 140 g. (115-5 ml.) of redistilled benzoyl chloride maintain the temperature at 35-40°, Cool to room temperature and extract the benzoyl piperidine with ether. Wash the ethereal solution with a little water to remove any dissolved sodium hydroxide, and dry with anhydrous potassium carbonate. Remove the ether on a water bath and distil the residue under diminished pressure (Fig. II, 20, 1). Collect the benzoyl piperidine at 184—186°/15 mm. it is an almost colourless viscous liquid and crystallises on standing in colourless needles m.p. 46°. The yield is 170 g. [Pg.492]

Benzylatnine. Warm an alcoholic suspension of 118-5 g. of finely-powdered benzyl phthalimide with 25 g. of 100 per cent, hydrazine hydrate (CAUTION corrosive liquid) a white, gelatinous precipitate is produced rapidly. Decompose the latter (when its formation appears complete) by heating with excess of hydrochloric acid on a steam bath. Collect the phthalyl hydrazide which separates by suction filtration, and wash it with a little water. Concentrate the filtrate by distillation to remove alcohol, cool, filter from the small amount of precipitated phthalyl hydrazide, render alkaline with excess of sodium hydroxide solution, and extract the liberated benzylamine with ether. Dry the ethereal solution with potassium hydroxide pellets, remove the solvent (compare Fig. //, 13, 4) on a water bath and finally distil the residue. Collect the benzylamine at 185-187° the 3ueld is 50 g. [Pg.569]

The experimental details for mono-M-propylanillne are as follows. Reflux a mixture of 230 g. of aniline and 123 g. of n-propyl bromide for 8-10 hours. Allow to cool, render the mixture alkafine, and add a solution of 150 g. of zinc chloride in 150 g. of water. Cool the mixture and stir after 12 hours, filter at the pump and drain well. Extract the thick paste several times with boiling light petroleum, b.p. 60-80° (it is best to use a Soxhlet apparatus), wash the combined extracts successively with water and dilute ammonia solution, and then dry over anhydrous potassium carbonate or anhydrous magnesium sulphate. Remove the solvent on a water bath, and distil the residue from a Claisen flask with fractionating side arm (well lagged). Collect the n-propyl-aniline at 218-220° the yield is 80 g. Treat the pasty solid zincichloride with an excess of. sodium hydroxide solution and steam distil 130 g. of pure aniline are recovered. [Pg.571]

Dissolve 46-5 g. (45-5 ml.) of aniUne in a mixture of 126 ml. of concentrated hydrochloric acid and 126 ml. of water contained in a 1-htre beaker. Cool to 0-5° in a bath of ice and salt, and add a solution of 36-5 g. of sodium nitrite in 75 ml. of water in small portions stir vigorously with a thermometer (1) and maintain the temperature below 10°, but preferably at about 5° by the addition of a httle crushed ice if necessary. The diazotisation is complete when a drop of the solution diluted with 3-4 drops of water gives an immediate blue colouration with potassium iodide - starch paper the test should be performed 3-4 minutes after the last addition of the nitrite solution. Prepare a solution of 76 g. of sodium fluoborate (2) in 150 ml. of water, cool, and add the chilled solution slowly to the diazonium salt solution the latter must be kept well stirred (1) and the temperature controlled so that it is below 10°. Allow to stand for 10 minutes with frequent stirring. Filter... [Pg.609]

Dissolve 34 g. of o-nitroaniline in a warm mixture of 63 ml. of concentrated hydrochloric acid and 63 ml. of water contained in a 600 ml. beaker. Place the beaker in an ice - salt bath, and cool to 0-5° whilst stirring mechanically the o-nitroaniline hydrochloride will separate in a finely-divided crystalline form. Add a cold solution of 18 g. of sodium nitrite in 40 ml. of water slowly and with stirring to an end point with potassium iodide - starch paper do not allow the temperature to rise above 5-7 . Introduce, whilst stirring vigorously, a solution of 40 g. of sodium borofluoride in 80 ml. of water. Stir for a further 10 minutes, and filter the solid diazonium fluoborate with suction on a sintered glass funnel. Wash it immediately once with 25 ml. of cold 5 per cent, sodium borofluoride solution, then twice with 15 ml. portions of rectified (or methylated) spirit and several times with ether in each washing stir... [Pg.612]


See other pages where Water potassium and is mentioned: [Pg.572]    [Pg.678]    [Pg.670]    [Pg.135]    [Pg.720]    [Pg.752]    [Pg.726]    [Pg.716]    [Pg.750]    [Pg.670]    [Pg.572]    [Pg.678]    [Pg.670]    [Pg.135]    [Pg.720]    [Pg.752]    [Pg.726]    [Pg.716]    [Pg.750]    [Pg.670]    [Pg.27]    [Pg.163]    [Pg.292]    [Pg.325]    [Pg.325]    [Pg.472]    [Pg.240]    [Pg.297]    [Pg.484]    [Pg.176]    [Pg.191]    [Pg.259]    [Pg.281]    [Pg.282]    [Pg.289]    [Pg.355]    [Pg.418]    [Pg.487]    [Pg.488]    [Pg.599]    [Pg.600]    [Pg.613]    [Pg.712]   
See also in sourсe #XX -- [ Pg.984 , Pg.985 , Pg.986 ]




SEARCH



Potassium Water

Potassium oleate and water

Sodium, Potassium, Chloride, and Water

© 2024 chempedia.info