Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Biogenic particles

Let us define a two-box model for a steady-stafe ocean as shown in Fig. 10-22. The two well mixed reservoirs correspond to the surface ocean and deep oceans. We assume that rivers are the only source and sediments are the only sink. Elements are also removed from the surface box by biogenic particles (B). We also assume there is mixing between the two boxes that can be expressed as a velocity Vmix = 2 m/yr and that rivers input water to the surface box at a rate of Vnv = 0.1 m/yr. The resulting ratio of F mix/V riv is 20. [Pg.271]

Fig. 14-6 Profiles of potential temperature and phosphate at 21 29 N, 122 15 W in the Pacific Ocean and a schematic representation of the oceanic processes controlling the P distribution. The dominant processes shown are (1) upwelling of nutrient-rich waters, (2) biological productivity and the sinking of biogenic particles, (3) regeneration of P by the decomposition of organic matter within the water column and surface sediments, (4) decomposition of particles below the main thermocline, (5) slow exchange between surface and deep waters, and (6) incorporation of P into the bottom sediments. Fig. 14-6 Profiles of potential temperature and phosphate at 21 29 N, 122 15 W in the Pacific Ocean and a schematic representation of the oceanic processes controlling the P distribution. The dominant processes shown are (1) upwelling of nutrient-rich waters, (2) biological productivity and the sinking of biogenic particles, (3) regeneration of P by the decomposition of organic matter within the water column and surface sediments, (4) decomposition of particles below the main thermocline, (5) slow exchange between surface and deep waters, and (6) incorporation of P into the bottom sediments.
POC/ Th (mol C/dpm is the ratio on sinking particles and is the decay constant of " Th (0.029 d ). This approach makes no assumptions about residence times, although it implicitly assumes that sinking biogenic particles are the principal carriers of " Th atoms, that the POC/ Th ratio on sinking particles can be measured, that steady state applies and that horizontal and vertical transport of " Th via advection of water are negligible. [Pg.472]

Figure 3. Time series of nitrate (Slagle and Heimerdinger 1991) and dissolved, particulate, and total in surface water at 47°N, 20°W (Atlantic Ocean) in April-May 1989. activity calculated as 0.0686 salinity (Chen et al. 1986). The production of biogenic particles during the bloom enhances the scavenging of Th, resulting in growing disequilibrium with time due to sinking of particles. Figure 3. Time series of nitrate (Slagle and Heimerdinger 1991) and dissolved, particulate, and total in surface water at 47°N, 20°W (Atlantic Ocean) in April-May 1989. activity calculated as 0.0686 salinity (Chen et al. 1986). The production of biogenic particles during the bloom enhances the scavenging of Th, resulting in growing disequilibrium with time due to sinking of particles.
Much of the geographic variability in sedimentary ( Paxs/ °Thxs) observed in modern sediments may be explained by variability in the composition of biogenic particles arising from variability in the structure of the planktonic ecosystem. This can be inferred from the composition-dependence of F(Th/Pa) (Fig. 8), and is shown explicitly by the relationship between sediment trap ( Paxs/ °Thxs) and the opal/calcite ratio of the trapped particles (Fig. 9). Sediment trap ( Paxs/ °Thxs) also exhibits a positive relationship with the mass flux of particles, but the correlation is poorer than that with particle composition (Fig. 9). Indeed, the relationship between particulate ( Paxs/ °Thxs)... [Pg.513]

Simpson HJ, Trier RM, Toggweiler JR, Mathieu G, Deck BL, Olsen CR, Hammond DE, Fuller C, Ku TL (1982) Radionuclides in Mono Lake, California. Science 216 512-514 Smith CR, Berelson W, Demaster DJ, Dobbs FC, Hammond D, Hoover DJ, Pope RH, Stephens M (1997) Latitudinal variations in benthic processes in the abyssal equatorial Pacific control by biogenic particle flux. Deep-Sea Res Part II-Topical Studies in Oceanography 44(9-10) 2295 Smith CR, Pope RH, Demaster DJ, Magaard L (1993) Age-dependent mixing of deep-sea sediments. Geochim Cosmochim Acta 57(7) 1473-1488... [Pg.528]

As mentioned, the type of concentration-depth profiles observed in oceans should also be observed in lakes. However, the vertical concentration differences in lakes are often not as pronounced as in the ocean. The reason for this is, that the water column in lakes is much shorter mixing and stagnation in lakes is much more dynamic than in the oceans. Due to the presence of high concentrations of different particles in lakes, the release of trace elements from biogenic particles may not be clearly observed, due to readsorption to other particles. This would mean that low concentrations are observed throughout the water column, but that concentration differences are small. Atmospheric inputs to the upper water layers may also make it more difficult to observe a depletion of certain elements in the epilimnion. [Pg.394]

The vertical distribution of biolimiting elements is characterized by deep-water enrichments and surface-water depletions. As described above, this vertical segregation is caused by the remineralization of biogenic particles in the deep sea. Not all particulate matter that sinks into the deep zone is remineralized. Some survives to become buried in the sediments. How much of the biogenic particle flux escapes from surfece waters How much of this particle flux is remineralized in the deep zone How much is lost from the ocean by burial in the sediments What effect does this have on the concentrations of the biolimiting elements ... [Pg.227]

From the perspective of the surface box, the biolimiting elements are supplied via river runoff and from upweUing. The elements are removed via the sinking of biogenic particles and downwelling. Since this model considers only the transport of materials into and out of the ocean and between the two reservoirs, details as to what happens to the elements while they reside in the boxes are not needed other than that they are present in a steady state. In such a case, the input rate of a biolimiting element will equal its output rate. For the surface-water reservoir, the mass balance that describes this steady state is given by... [Pg.229]

Plankton produce biogenic particles in the surfece waters of all the ocean basins. Most of these particles sink into the deep sea and are then remineralized. The rain of biogenic particles causes the nutrient concentration of the deep-water masses to increase as they move through the ocean basins for two reasons. First, the further a deep-water mass has traveled from its site of formation, the greater the amount of particles it will... [Pg.239]

Nutrients are carried back to the sea surface by the return flow of deep-water circulation. The degree of horizontal segregation exhibited by a biolimiting element is thus determined by the rates of water motion to and from the deep sea, the flux of biogenic particles, and the element s recycling efficiency (/and from the Broecker Box model). If a steady state exists, the deep-water concentration gradient must be the result of a balance between the rates of nutrient supply and removal via the physical return of water to the sea surface. [Pg.240]

The composition of the aeolian particles is temporally and spatially variable. These particles are typically fragments of weathered rocks, soil, or biogenic detritus, such as terrestrial plant fragments. Other biogenic particles include bacteria, phytoplankton, mold, fungal spores, seeds, and even insects. [Pg.265]

Mid-depth maxima are produced by mid-depth sources of metals. Some of these maxima are created by remineralization of detrital biogenic particles, such as seen in Figure 11.4f for cadmium. Others are caused by lateral transport of metals mobilized from coastal sediments as illustrated in Figure 11.17(a) for manganese. Mid-depth maxima can also result from hydrothermal emissions as shown in Figure 11.19 for Mn (aq) and He(g) at a site in the Eastern North Pacific Ocean. Hydrothermal fluids are emitted into the ocean from chimneys located atop the East Pacific Rise at water depths of about 2500 m. After entering the ocean, the Mn and He are entrained in subsurfece currents and... [Pg.292]

In the case of Zn and Cd, a subsurface dissolved concentration maximum in the oxic zone suggests supply via remineralization of sinking detrital biogenic particles. As with Pb and Cu, the dissolved concentrations of Zn and Cd decline as the anoxic zone is... [Pg.293]


See other pages where Biogenic particles is mentioned: [Pg.47]    [Pg.272]    [Pg.367]    [Pg.469]    [Pg.470]    [Pg.471]    [Pg.472]    [Pg.507]    [Pg.510]    [Pg.523]    [Pg.525]    [Pg.56]    [Pg.3]    [Pg.224]    [Pg.229]    [Pg.229]    [Pg.234]    [Pg.234]    [Pg.240]    [Pg.247]    [Pg.256]    [Pg.284]    [Pg.288]    [Pg.288]    [Pg.300]    [Pg.339]    [Pg.340]    [Pg.341]    [Pg.344]    [Pg.345]    [Pg.392]    [Pg.392]    [Pg.467]    [Pg.496]    [Pg.557]    [Pg.778]    [Pg.47]   
See also in sourсe #XX -- [ Pg.72 ]




SEARCH



Biogenics

Biogenous

© 2024 chempedia.info