Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Wastewater chlorination solution

Common Design Shortcomings of Wastewater Chlorination and Solutions... [Pg.410]

Other burners are used for low capacity operations. A cascade or checker burner, ia which molten sulfur flows down through brick checkerwork countercurrent to a flow of air, is used ia small units with a sulfur trioxide converter to condition gases entering electrostatic precipitators at boiler plants operating on low sulfur coal. A small pan burner, which is fed with soHd, low carbon sulfur, is used to produce sulfur dioxide for solution ia irrigation water to control the pH and maintain porosity ia the soil. The same type of burner is used to disiafect wastewater ia this case sulfur dioxide is used iastead of chlorine. [Pg.145]

Vinyl chloride can be completely oxidized to CO2 and HCl using potassium permanganate [7722-64-7] in an aqueous solution at pH 10. This reaction can be used for wastewater purification, as can ozonolysis, peroxide oxidation, and uv irradiation (42). The aqueous phase oxidation of vinyl chloride with chlorine yields chloroacetaldehyde (43). [Pg.414]

Extraction, employs a liquid solvent to remove certain compounds from another liquid using the preferential solubility of these solutes in the MSA. For instance, wash oils can be used to remove phenols mid polychlorinated biphenyls (PCBs) from die aqueous wastes of synthetic-fuel plants and chlorinated hydrocarbons from organic wastewater. [Pg.17]

Ozonation treatment can be used to oxidize cyanide, thereby reducing the concentration of cyanide in wastewater. Ozone, with an electrode potential of +1.24 V in alkaline solutions, is one of the most powerful oxidizing agents known. Cyanide oxidation with ozone is a two-step reaction similar to alkaline chlorination.22 Cyanide is oxidized to cyanate, with ozone reduced to oxygen as per the following equation ... [Pg.371]

This wastewater stream contains lead (Pb) salts and chlorinated hydrocarbons generated from corrosion of the anodes as well as asbestos particles generated as a result of degradation of the diaphragm with use. Wastewater is also generated from the scrubber where the chlorine is wet scrubbed and from the ion exchange resin used to purify the brine solution. These wash water often contains dilute hydrochloric acid with small amounts of dissolved calcium magnesium and aluminum chloride. Like in other cells, the scrubber water also contributes to the wastewater stream. [Pg.926]

A major disadvantage of the Wacker chemistry using chloride catalysts is the production of chlorinated byproducts such as chloroethanal. These have to be removed since they are toxic and cannot be allowed in the wastewater. In the small recycle loop the catalyst solution is heated to 160 °C which leads to decomposition of chlorinated aldehydes under the influence of the metal chlorides. The traces going over the top in the gas/liquid separator have to be removed from the wastewater by different means. The toxicity inhibits biodegradation. Chlorine free catalysts have been studied but have not (yet) been commercialised. [Pg.324]

Chlorine gas may be identified readdy by its distinctive color and odor. Its odor is perceptible at 3 ppm concentration in air. Chlorine may be measured in water at low ppm by various titrimetry or colorimetric techniques (APHA, AWWA and WEF. 1999. Standard Methods for the Examination of Water and Wastewater, 20th ed. Washington DC American Pubhc Health Association). In iodometric titrations aqueous samples are acidified with acetic acid followed by addition of potassium iodide. Dissolved chlorine liberates iodine which is titrated with a standard solution of sodium thiosulfate using starch indicator. At the endpoint of titration, the blue color of the starch solution disappears. Alternatively, a standardized solution of a reducing agent, such as thiosulfate or phenylarsine oxide, is added in excess to chlorinated water and the unreacted reductant is then back titrated against a standard solution of iodine or potassium iodate. In amperometric titration, which has a lower detection limit, the free chlorine is titrated against phenyl arsine oxide at a pH between 6.5 and 7.5. [Pg.212]

Hypochlorous acid exists only in dilute aqueous solution. It is found in many wastewaters that have been subjected to chlorination. [Pg.387]

The total free chlorine in wastewaters as measured by colorimetric techniques constitutes both the dissolved molecular chlorine, hypochlorite ion, OCl, and hypochlorous acid. An equilibrium exists between these species, the concentrations of which depend on the temperature and pH of the waste-water. Concentration of the hypochlorous acid may be estimated from the K value or from the ratio (33% of the measured concentration of free chlorine). The free chlorine may be measured by amperometric titration after the addition of a phosphate buffer solution to produce a pH between 6.5 and 7.5. The sample is titrated against a standard solution of phenylarsine oxide. Alternatively, the syringaldazine (3,5-dimethoxy-4-hydroxybenzaldazine) colorimetric test may be performed. This color-forming reagent in 2-propanol yields a colored product with free chlorine, the absorbance of which may be... [Pg.388]

Reverse osmosis is nsed as a method of desalting seawater, recovering wastewater from paper mill operations, pollution control, industrial water treatment, chemical separations, and food processing. This method involves application of pressure to the surface of a saline solution, thus forcing pure water to pass from the solution through a membrane that is too dense to permit passage of sodium and chlorine ions. Hollow fibers of cellulose acetate or nylon are used as membranes, since their large surface area offers more efficient separation. [Pg.1183]

In most wastes and wastewater, polychlorinated biphenyls (PCBs) and particulate matter are found in the aqueous phase. The fraction of PCBs associated with each phase depends on the hydrophobicity. The congeners containing more chlorine substituents have a stronger tendency to associate with particulate. PCBs sorbed to surfaces such as diatomaceous earth are not oxidized by aqueous OH at an appreciable rate relative to the reaction rate of OH with solution-phase PCBs. Sedlak and Andren (1994) performed a quantitative evaluation of the effect of sorption to particulate matter on the rate of PCB oxidation by OH. The transformations of three PCB congeners — 2-monochlorobiphenyl (MClBp) 2,2, 5-trichlorobiphe-nyl (TrCIBp) and 2,2, 4,5,5 -pentachlorobiphenyl (PeCIBp) — were studied at an initial concentration of 1 pM of PCB solution. Data from the experiments were compared with predictions from quantitative kinetic models that used independently determined data on reaction rates and OH concentrations. [Pg.223]

A complete removal of the surfactant was obtained at BDD in which, in absence of chlorides, mineralization was achieved by a direct involving of OH radicals originated at the electrode surface, with a process which resulted controlled by the mass transfer. The results from oxidation at BDD performed with a real car wash wastewater confirmed those obtained from model solutions. Conversely, at ternary oxide electrodes the efficiency was lower than that measured for model solutions as suggested by the authors, the presence of heavy metals, which caused the decomposition of electrogenerated active chlorine, could be the reason of this behaviour. [Pg.218]

Chloramination process can be applied to both water treatment and wastewater treatment (1,29). In the field of potable water treatment, chloramine is recommended as a secondary disinfectant because it is ineffective as a virucide, and is only marginally effective against Giardia cysts. It is formed from the combination of ammonia and chlorine (hypochlorite or hypochlorous acid). The chemical is generated on site, usually by injecting ammonia gas or adding an ammonium sulfate solution to chlorinated water. [Pg.383]


See other pages where Wastewater chlorination solution is mentioned: [Pg.480]    [Pg.335]    [Pg.323]    [Pg.287]    [Pg.81]    [Pg.63]    [Pg.948]    [Pg.163]    [Pg.536]    [Pg.745]    [Pg.222]    [Pg.196]    [Pg.606]    [Pg.66]    [Pg.846]    [Pg.536]    [Pg.745]    [Pg.606]    [Pg.261]    [Pg.241]    [Pg.447]    [Pg.484]    [Pg.68]    [Pg.165]    [Pg.105]    [Pg.248]    [Pg.278]    [Pg.169]    [Pg.230]    [Pg.337]    [Pg.217]    [Pg.47]    [Pg.3865]    [Pg.337]    [Pg.754]   
See also in sourсe #XX -- [ Pg.410 ]




SEARCH



Wastewater chlorination

© 2024 chempedia.info