Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Waste treatment nuclear

Low Level Waste Treatment. Methods of treatment for radioactive wastes produced in a nuclear power plant include (/) evaporation (qv) of cooling water to yield radioactive sludges, (2) filtration (qv) using ion-exchange (qv) resins, (J) incineration with the release of combustion gases through filters while retaining the radioactively contaminated ashes (see Incinerators), (4) compaction by presses, and (5) solidification in cement (qv) or asphalt (qv) within metal containers. [Pg.228]

The properties of hydrated titanium dioxide as an ion-exchange (qv) medium have been widely studied (51—55). Separations include those of alkaH and alkaline-earth metals, zinc, copper, cobalt, cesium, strontium, and barium. The use of hydrated titanium dioxide to separate uranium from seawater and also for the treatment of radioactive wastes from nuclear-reactor installations has been proposed (56). [Pg.120]

Bernard Manowitz, Treatment and Disposal of Wastes in Nuclear Chemical Technology George A. Sofer and Harold C. Weingartner, High Vacuum Technology Theodore Vermeulen, Separation by Adsorption Methods Sherman S. Weidenbaum, Mixing of Solids... [Pg.342]

Treatment and Disposal of Wastes in Nuclear Chemical Technology... [Pg.7]

Worldwide, there are numerous plasma system designs for treatment of all types of wastes. Economical considerations limit their commercial applications to the most profitable actions. Presently they commercially operate in Switzerland and Germany for low level nuclear waste vitrification, in France and the USA for asbestos waste vitrification, in the USA and Australia for hazardous waste treatment, in Japan and France for municipal fly ash vitrification. The most of installations is working in Japan because there 70% of municipal waste is incinerated and the ash can not be used as landfill. EU Regulations banning the disposal to landfill of toxic and hazardous wastes after year 2002 may cause wider use of plasma waste destruction technology in Europe. [Pg.104]

Scott D. Elliott is manager of the Waste and Transportation Services Department for Duratek Federal Services at the Hanford Nuclear Reservation, Richland, Washington. Elliott has worked in the fields of nuclear operations, training, and waste treatment for 24 years and has additional experience as a nuclear facility building emergency director. He is presently a nuclear, biological, and chemical operations instructor for the U.S. Army Reserves. [Pg.12]

The second part deals with applications of solvent extraction in industry, and begins with a general chapter (Chapter 7) that involves both equipment, flowsheet development, economic factors, and environmental aspects. Chapter 8 is concerned with fundamental engineering concepts for multistage extraction. Chapter 9 describes contactor design. It is followed by the industrial extraction of organic and biochemical compounds for purification and pharmaceutical uses (Chapter 10), recovery of metals for industrial production (Chapter 11), applications in the nuclear fuel cycle (Chapter 12), and recycling or waste treatment (Chapter 14). Analytical applications are briefly summarized in Chapter 13. The last chapters, Chapters 15 and 16, describe some newer developments in which the principle of solvent extraction has or may come into use, and theoretical developments. [Pg.31]

After the separation of the actinides from the high-level waste, it is desirable to remove certain other fission products from the nuclear wastes. Some Cs and Sr are low-charged cations that react well with macro-cyclic ligands (e.g., crown ethers, calixarenes). Research to synthesize and investigate the properties of macrocyclic ligands for application in nuclear waste treatment has been an active effort internationally. Some of the results obtained are discussed in section 12.7. [Pg.512]

Humans are exposed to radiation from the testing and explosion of nuclear weapons and the wastes of nuclear reactors and power plants. Strontium-90 is a fission product from nuclear reactors. It is of particular concern because it has a long half-life of 38 years and becomes concentrated in the food chain, particularly plants-to-milk. The ban on atmospheric testing of nuclear weapons has reduced this hazard. Strontium-90 does have some industrial uses. Most people in developed countries receive minor exposure to radiation through medical procedures such as X-ray and various treatments for some diseases. [Pg.33]

Potential applications for CA-CDI technology include the purification of boiler water for fossil and nuclear power plants, volume reduction of liquid radioactive waste, treatment of agricultural wastewater containing pesticides and other toxic compounds, creation of ultrapure water for semiconductor processing, treatment of wastewater from electroplating operations, desalination of seawater, and removal of salt from water for agricultural irrigation. [Pg.746]

Oversby, V. M. 1994. Nuclear waste materials. In Frost B. R. T. (ed.) Material science and technology, a comprehensive treatment, Nuclear Materials, VCH, Weinheim, Germany, 10B, 392-442. [Pg.87]

Among three-dimensional framework hosts forming intercalation compounds, zeolites (see Section 1.5) have attracted considerable attention because of their technical importance (Derouane, 1982 Dyer, 1984). Intracrystalline voids in anhydrous zeolites provide a strongly polar environment that can be filled with polar or ionic species to increase the crystal energy. Treatment of zeolites (e.g. Na-Y zeolite) with vapours of sodium results in the formation of a red product consisting of Na " intercalated into the zeolite cavities (Thomas, 1983). The locations of these clusters inside the zeolites are not yet known, but they seem to be buried within the rather inaccessible cavities inside zeolites, with the result that ordinary solvents do not reach them. Such intercalation of ionic species in zeolites may have implications in nuclear-waste treatment and storage. [Pg.503]

These reports are based on 120 technical reports (here denoted by KBS TR) on different technical aspects of waste treatment and ground disposal. More than 70 university departments and consulting companies in Sweden and abroad have been engaged in the preparation of these reports. The research on storage of radioactive waste in the ground is still in progress, both within the Nuclear Fuel Safety Project but also within a Swedish-American joint project between Swedish Nuclear Fuel Supply Co(Svensk Karnbranslefdrsorjning AB, SKBF), Fack, S-10240 Stockholm, Sweden, and Lawrence Berkeley Laboratory, Earth Science Division, University of California, Berkeley. [Pg.72]

Harmful chemical spills can often be cleaned up by treatment with another chemical. A spill of H2SO4, for example, can be neutralized by adding NaHC03. Why can t harmful radioactive wastes from nuclear power plants be cleaned up just as easily ... [Pg.980]

J.-F. Dozol, V. Bohmer, M. A. McKervey, F. Lopez-Calahorra, D. N. Reinhoudt, M. J. Schwing, R. Ungaro and G. Wipff, New macrocyclic extractants for radioactive waste treatment Ionizable crown ethers and functionalized calixarenes, EUR-OP Reference CG-NA-17615-EN-C (EUR-17615), European Commission, Nuclear Science and Technology, Luxembourg, 1997. [Pg.311]

F. Arnaud-Neu, M.-J. Schwing-Weill and J.-F. Dozol, Calixarenes for nuclear waste treatment in Calixarenes 2001, eds. Z. Asfari, V. Bohmer, J. Harrowfield and J. Vicens, Kluwer, Dordrecht, Editon edn., 2001, p. 642. [Pg.315]

Hill, C., Dozol, J.-F., Lamare, V., Rouquette, H., Eymard, S., Tournois, B., Vicens, J., Asfari, Z., Bressot, C., Ungaro, R., Casnati, A. Nuclear waste treatment by means of supported liquid membranes containing calixcrown compounds. J. Incl. Phenom. Maerocyclic Chem. (1994), 19 (1—4), 399 -08. [Pg.376]

The solid wastes from nuclear operations include the concentrates from liquid and airborne treatment along with paper, clothing, lab glassware, and scrap equipment. The transuranic and low-level wastes both receive... [Pg.978]


See other pages where Waste treatment nuclear is mentioned: [Pg.232]    [Pg.477]    [Pg.470]    [Pg.780]    [Pg.43]    [Pg.172]    [Pg.138]    [Pg.922]    [Pg.11]    [Pg.690]    [Pg.618]    [Pg.212]    [Pg.247]    [Pg.218]   
See also in sourсe #XX -- [ Pg.10 , Pg.228 ]




SEARCH



Nuclear waste

Waste treatment

© 2024 chempedia.info