Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vitamin reaction

Proteins are the most reactive of the major food components and, apart from the destruction of certain vitamins, reactions between food proteins and other food components are the major chemical interactions that occur during processing. Proteins can react with reducing sugars, fats and their oxidation products, polyphenols, vitamin and with various chemical additives such as nitrites, aldehydes and alkali (Fig. 1). These reactions can lead to a reduction... [Pg.370]

It is important in the body as, except for methionine, it is the only substance known to take part in methylating reactions. Sometimes regarded as a member of the vitamin B group. [Pg.96]

The synthesis of vitamin Dj from a sensitive dienone was another etu-ly success of phosphorus ylide synthesis (H.H. Inhoffen, 1958 A). This Wittig reaction could be carried out without any isomerization of the diene. An excess of the ylide was needed presumably because the alkoxides formed from the hydroxy group in the educt removed some of the ylide. [Pg.31]

The vitamin D3 metabolite la,25-dihydroxycholecalciferol is a lifesaving drug in treatment of defective bone formation due to renal failure. Retrosynthetic analysis (E.G. Baggjolint, 1982) revealed the obvious precursors shown below, a (2-cyclohexylideneethyl)diphenylphosphine oxide (A) and an octahydro-4f/-inden-4-one (B), to be connected in a Wittig-Homer reaction (cf. section 1.5). [Pg.281]

Thiazolium salts with alkyl (103, 722), arylalkyl (116), aryl (305), or heteroaryl (96) substituents on the nitrogen have been also prepared by this procedure. As in the thiazole series, N-substituted thioamides can be formed directly in the reaction mixture from phosphorus pentasulfide and N-substituted amides (127). These methods are important in the synthesis of thiamine 102 (vitamin Bj) (Scheme 45). [Pg.212]

An example of a biologically important aide hyde is pyridoxal phosphate which is the active form of vitamin Bg and a coenzyme for many of the reac tions of a ammo acids In these reactions the ammo acid binds to the coenzyme by reacting with it to form an imine of the kind shown in the equation Re actions then take place at the ammo acid portion of the imine modifying the ammo acid In the last step enzyme catalyzed hydrolysis cleaves the imme to pyridoxal and the modified ammo acid... [Pg.728]

A steroid very closely related structurally to cholesterol is its 7 dehydro derivative 7 Dehydrocholesterol is formed by enzymatic oxidation of cholesterol and has a conju gated diene unit m its B ring 7 Dehydrocholesterol is present m the tissues of the skin where it is transformed to vitamin D3 by a sunlight induced photochemical reaction... [Pg.1096]

Covalent synthesis of complex molecules involves the reactive assembly of many atoms into subunits with aid of reagents and estabUshed as well as innovative reaction pathways. These subunits are then subjected to various reactions that will assemble the target molecule. These reaction schemes involve the protection of certain sensitive parts of the molecule while other parts are being reacted. Very complex molecules can be synthesized in this manner. A prime example of the success of this approach is the total synthesis of palytoxin, a poisonous substance found in marine soft corals (35). Other complex molecules synthesized by sequential addition of atoms and blocks of atoms include vitamin potentially anticancer KH-1 adenocarcinoma antigen,... [Pg.206]

Chloroacetate esters are usually made by removing water from a mixture of chloroacetic acid and the corresponding alcohol. Reaction of alcohol with chloroacetyl chloride is an anhydrous process which Hberates HCl. Chloroacetic acid will react with olefins in the presence of a catalyst to yield chloroacetate esters. Dichloroacetic and trichloroacetic acid esters are also known. These esters are usehil in synthesis. They are more reactive than the parent acids. Ethyl chloroacetate can be converted to sodium fluoroacetate by reaction with potassium fluoride (see Fluorine compounds, organic). Both methyl and ethyl chloroacetate are used as agricultural and pharmaceutical intermediates, specialty solvents, flavors, and fragrances. Methyl chloroacetate and P ionone undergo a Dar2ens reaction to form an intermediate in the synthesis of Vitamin A. Reaction of methyl chloroacetate with ammonia produces chloroacetamide [79-07-2] C2H ClNO (53). [Pg.90]

X5lenol is an important starting material for insecticides, xylenol—formaldehyde resins, disinfectants, wood preservatives, and for synthesis of a-tocopherol (vitamin E) (258) and i7/-a-tocopherol acetate (USP 34-50/kg, October 1994). The Bayer insecticide Methiocarb is manufactured by reaction of 3,5-x5lenol with methylsulfenyl chloride to yield 4-methylmercapto-3,5-xylenol, followed by reaction with methyl isocyanate (257). Disinfectants and preservatives are produced by chlorination to 4-chloro- and 2,4-dich1oro-3,5-dimethylpheno1 (251). [Pg.496]

The pharmaceutical industry employs ozone in organic reactions to produce peroxides as germicides in skin lotions, for the oxidation of intermediates for bacteriostats, and in the synthesis of steroids (qv) such as cortisone (see Disinfectants and antiseptics). Vitamin E can be prepared by ozonation of trimethyUiydroquinone. [Pg.503]

The i j -configuration of the 6,7-double bond in pre-vitamin D is critical to its subsequent thermal rearrangement to the active vitamin. A photochemical isomerization of pre-vitamin D to yield the inactive trans-isoTnen occurs under conditions of synthesis, and is especially detrimental if there is a significant short wavelength component, eg, 254 nm, to the radiation continuum used to effect the synthesis. This side reaction reduces overall yield of the process and limits conversion yields to ca 60% (71). Photochemical reconversion of the inactive side product, tachysterol, to pre-vitamin D allows recovery of the product which would otherwise be lost, and improves economics of the overall process (70). [Pg.392]

Oxa2oles react with dienophiles to give pyridines after dehydration or other aromatization reactions (69,70). A commercially important example is the reaction of a 5-aLkoxy-4-methyloxa2ole with 1,4-butenediol to yield pyridoxine (55), which is vitamin... [Pg.332]

Biochemical Reactions. The quinones in biological systems play varied and important roles (21,22). In insects they are used for defense purposes, and the vitamin K family members, eg, vitamin [11104-38-4] (32) and vitamin [11032-49-8] (33), which are based on 2-meth5l-l,4-naphthoquiaone, are blood-clotting agents (see Vitamins, vitamin k). [Pg.406]

There are numerous synthetic and natural compounds called antioxidants which regulate or block oxidative reactions by quenching free radicals or by preventing free-radical formation. Vitamins A, C, and E and the mineral selenium are common antioxidants occurring naturally in foods (104,105). A broad range of flavonoid or phenoHc compounds have been found to be functional antioxidants in numerous test systems (106—108). The antioxidant properties of tea flavonoids have been characterized using models of chemical and biological oxidation reactions. [Pg.373]

The total antioxidant activity of teas and tea polyphenols in aqueous phase oxidation reactions has been deterrnined using an assay based on oxidation of 2,2 -azinobis-(3-ethylbenzothiazoline-sulfonate) (ABTS) by peroxyl radicals (114—117). Black and green tea extracts (2500 ppm) were found to be 8—12 times more effective antioxidants than a 1-mAf solution of the water-soluble form of vitamin E, Trolox. The most potent antioxidants of the tea flavonoids were found to be epicatechin gallate and epigallocatechin gallate. A 1-mAf solution of these flavanols were found respectively to be 4.9 and 4.8 times more potent than a 1-mAf solution of Trolox in scavenging an ABT radical cation. [Pg.373]

Vitamins aie specific organic compounds that are essential for normal metabolism. Many participate as cofactors or coen2ymes ia mammalian biochemical reactions. The common thread for the diverse chemical stmctures of the vitamins is that they ate micronutrients. Micronutrients are compounds that are requited ia only small amounts and are not synthesized by humans, either at all or, at least, ia sufficient quantity for metaboHc needs. Vitamins are obtained from the diet or as synthetic preparations used ia food fortification or supplements. [Pg.3]

Because of the time and expense involved, biological assays are used primarily for research purposes. The first chemical method for assaying L-ascorbic acid was the titration with 2,6-dichlorophenolindophenol solution (76). This method is not appHcable in the presence of a variety of interfering substances, eg, reduced metal ions, sulfites, tannins, or colored dyes. This 2,6-dichlorophenolindophenol method and other chemical and physiochemical methods are based on the reducing character of L-ascorbic acid (77). Colorimetric reactions with metal ions as weU as other redox systems, eg, potassium hexacyanoferrate(III), methylene blue, chloramine, etc, have been used for the assay, but they are unspecific because of interferences from a large number of reducing substances contained in foods and natural products (78). These methods have been used extensively in fish research (79). A specific photometric method for the assay of vitamin C in biological samples is based on the oxidation of ascorbic acid to dehydroascorbic acid with 2,4-dinitrophenylhydrazine (80). In the microfluorometric method, ascorbic acid is oxidized to dehydroascorbic acid in the presence of charcoal. The oxidized form is reacted with o-phenylenediamine to produce a fluorescent compound that is detected with an excitation maximum of ca 350 nm and an emission maximum of ca 430 nm (81). [Pg.17]

Fohc acid is a precursor of several important enzyme cofactors required for the synthesis of nucleic acids (qv) and the metaboHsm of certain amino acids. Fohc acid deficiency results in an inabiUty to produce deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and certain proteins (qv). Megaloblastic anemia is a common symptom of folate deficiency owing to rapid red blood cell turnover and the high metaboHc requirement of hematopoietic tissue. One of the clinical signs of acute folate deficiency includes a red and painhil tongue. Vitamin B 2 folate share a common metaboHc pathway, the methionine synthase reaction. Therefore a differential diagnosis is required to measure foHc acid deficiency because both foHc acid and vitamin B 2 deficiency cause... [Pg.41]

Vitamin A palmitate [79-81-2] (3), a commercially important form of the vitamin, is produced from vitamin A acetate (2) via a transesterification reaction with methyl palmitate. En2ymatic preparation of the palmitate from the acetate has also been described (22). [Pg.98]


See other pages where Vitamin reaction is mentioned: [Pg.104]    [Pg.112]    [Pg.568]    [Pg.62]    [Pg.181]    [Pg.361]    [Pg.109]    [Pg.124]    [Pg.458]    [Pg.479]    [Pg.252]    [Pg.19]    [Pg.229]    [Pg.309]    [Pg.324]    [Pg.385]    [Pg.101]    [Pg.392]    [Pg.500]    [Pg.491]    [Pg.337]    [Pg.416]    [Pg.120]    [Pg.293]    [Pg.18]    [Pg.21]    [Pg.22]    [Pg.87]    [Pg.98]   
See also in sourсe #XX -- [ Pg.46 , Pg.71 , Pg.194 , Pg.195 ]




SEARCH



© 2024 chempedia.info