Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Viscosity/viscous flow

Unlike elastic deformation in which the atoms maintain their nearest neighbors, flow involves changes in nearest neighbors and is a process of shear. This process is also dependent on time, so that one is concerned with the change of strain with time. The ease of flow in a liquid is characterized by its viscosity. Viscous flow is usually associated with liquids but it can occur in amorphous solids. For such materials, elastic and viscous processes can coexist. This is termed viscoelasticity and one can view elastic and viscous deformation as the limiting conditions of such behavior. Flow processes, such as creep, can also occur in crystalline materials. In this situation, the deformation processes involve different mechanisms but they can mimic viscoelastic behavior. [Pg.134]

Polyvinyl acetate Apparent viscosity, viscous flow activation energy Viscometry 128... [Pg.42]

Nonfractionating continuous inlet. An inlet in which gas flows from a gas stream being analyzed to the mass spectrometer ion source without any change in the conditions of flow through the inlet or by the conditions of flow through the ion source. This flow is usually viscous flow, such that the mean free path is very small in comparison with the smallest dimension of a traverse section of the channel. The flow characteristics are determined mainly by collisions between gas molecules, i.e., the viscosity of the gas. The flow can be laminar or turbulent. [Pg.433]

Our approach in this chapter is to alternate between experimental results and theoretical models to acquire familiarity with both the phenomena and the theories proposed to explain them. We shall consider a model for viscous flow due to Eyring which is based on the migration of vacancies or holes in the liquid. A theory developed by Debye will give a first view of the molecular weight dependence of viscosity an equation derived by Bueche will extend that view. Finally, a model for the snakelike wiggling of a polymer chain through an array of other molecules, due to deGennes, Doi, and Edwards, will be taken up. [Pg.76]

Next let us consider the differences in molecular architecture between polymers which exclusively display viscous flow and those which display a purely elastic response. To attribute the entire effect to molecular structure we assume the polymers are compared at the same temperature. Crosslinking between different chains is the structural feature responsible for elastic response in polymer samples. If the crosslinking is totally effective, we can regard the entire sample as one giant molecule, since the entire volume is permeated by a continuous network of chains. This result was anticipated in the discussion of the Bueche theory for chain entanglements in the last chapter, when we observed that viscosity would be infinite with entanglements if there were no slippage between chains. [Pg.137]

Viscotester Viscotron Viscous drag Viscous flow Viscous liquids VI. See Viscosity index. [Pg.1057]

One simple rheological model that is often used to describe the behavior of foams is that of a Bingham plastic. This appHes for flows over length scales sufficiently large that the foam can be reasonably considered as a continuous medium. The Bingham plastic model combines the properties of a yield stress like that of a soHd with the viscous flow of a Hquid. In simple Newtonian fluids, the shear stress T is proportional to the strain rate y, with the constant of proportionaHty being the fluid viscosity. In Bingham plastics, by contrast, the relation between stress and strain rate is r = where is... [Pg.430]

Melt Viscosity. As shown in Tables 2 and 3, the melt viscosity of an acid copolymer increases dramatically as the fraction of neutralization is increased. The relationship for sodium ionomers is shown in Figure 4 (6). Melt viscosities for a series of sodium ionomers derived from an ethylene—3.5 mol % methacrylic acid polymer show that the increase is most pronounced at low shear rates and that the ionomers become increasingly non-Newtonian with increasing neutralization (9). The activation energy for viscous flow has been reported to be somewhat higher in ionomers than in related acidic... [Pg.406]

Rheology. Both PB and PMP melts exhibit strong non-Newtonian behavior thek apparent melt viscosity decreases with an increase in shear stress (27,28). Melt viscosities of both resins depend on temperature (24,27). The activation energy for PB viscous flow is 46 kj /mol (11 kcal/mol) (39), and for PMP, 77 kJ/mol (18.4 kcal/mol) (28). Equipment used for PP processing is usually suitable for PB and PMP processing as well however, adjustments in the processing conditions must be made to account for the differences in melt temperatures and rheology. [Pg.431]

Deflocculation and Slurry Thinning. Sihcates are used as deflocculants, ie, agents that maintain high sohds slurry viscosities at increased sohds concentrations. Soluble sihcates suppress the formation of ordered stmctures within clay slurries that creates resistance to viscous flow within the various sytems. Laboratory trials are necessary, because the complexity of the systems precludes the use of a universal deflocculant. Sihcates are employed in thinning of limestone or clay slurries used in the wet-process manufacture of cements and bricks, clay refining, and petroleum drilling muds (see also... [Pg.13]

The viscosity of liquid silicates such as drose containing barium oxide and silica show a rapid fall between pure silica and 20 mole per cent of metal oxide of nearly an order of magnitude at 2000 K, followed by a slower decrease as more metal oxide is added. The viscosity then decreases by a factor of two between 20 and 40 mole per cent. The activation energy for viscous flow decreases from 560 kJ in pure silica to 160-180kJmol as the network is broken up by metal oxide addition. The introduction of CaFa into a silicate melt reduces the viscosity markedly, typically by about a factor of drree. There is a rapid increase in the thermal expansivity coefficient as the network is dispersed, from practically zero in solid silica to around 40 cm moP in a typical soda-lime glass. [Pg.309]

The flow behavior of the polymer blends is quite complex, influenced by the equilibrium thermodynamic, dynamics of phase separation, morphology, and flow geometry [2]. The flow properties of a two phase blend of incompatible polymers are determined by the properties of the component, that is the continuous phase while adding a low-viscosity component to a high-viscosity component melt. As long as the latter forms a continuous phase, the viscosity of the blend remains high. As soon as the phase inversion [2] occurs, the viscosity of the blend falls sharply, even with a relatively low content of low-viscosity component. Therefore, the S-shaped concentration dependence of the viscosity of blend of incompatible polymers is an indication of phase inversion. The temperature dependence of the viscosity of blends is determined by the viscous flow of the dispersion medium, which is affected by the presence of a second component. [Pg.611]

Correlating factor for viscous flow power, Table 5-1 Mixing factors, turbulent flow power. Table 5-1 Viscosity correction factor for turbulent How (static mixer)... [Pg.339]

Increasing the bound mbber content increases the effective volume fraction of filler by intimately bonding polymer to the filler. This polymer is no longer available to contribute to viscous flow. As a consequence, the viscosity of the compound increases. [Pg.497]

Although the transport properties, conductivity, and viscosity can be obtained quantitatively from fluctuations in a system at equilibrium in the absence of any driving forces, it is most common to determine the values from experiments in which a flux is induced by an external stress. In the case of viscous flow, the shear viscosity r is the proportionality constant connecting the magnitude of shear stress S to the flux of matter relative to a stationary surface. If the flux is measured as a velocity gradient, then... [Pg.120]

While electrical conductivity, diffusion coefficients, and shear viscosity are determined by weak perturbations of the fundamental diffu-sional motions, thermal conductivity is dominated by the vibrational motions of ions. Heat can be transmitted through material substances without any bulk flow or long-range diffusion occurring, simply by the exchange of momentum via collisions of particles. It is for this reason that in liquids in which the rate constants for viscous flow and electrical conductivity are highly temperature dependent, the thermal conductivity remains essentially the same at lower as at much higher temperatures and more fluid conditions. [Pg.121]

In order to go further into the experimental check we constructed Arrhenius plots of the fluorescence quantum yield of BMPC in a few solvents (methanol, ethanol, propanol, hexanol and methylene chloride), all of which showed good linearity. The activation energies and A/kp ratios, calculated from the slopes and intercepts of those plots, are collected in Table 1. The smooth increase of both parameters in the alcohol series is mainly associated with the increase of solvent viscosity. On the other hand, decrease of the solvent dielectric constant from 32.7 (methanol) to 8.9 (dichloromethane) causes a small but significant increase of the activation energy also, this increase is probably somewhat compensated by the decrease of the viscous-flow... [Pg.393]

To measure the strength of the forces exerted on particles, various analytical techniques have been developed [6, 7]. Unfortunately, since most of these techniques are based on hydrodynamics, assumption of the potential profiles is required and the viscosities of the fiuid and the particle sizes must be precisely determined in separate experiments, for example, using the viscous flow technique [8,9] and power spectrum analysis of position fluctuation [10]. Furthermore, these methods provide information on ensemble averages for a mass of many particles. The sizes, shapes, and physical and chemical properties of individual particles may be different from each other, which will result in a variety of force strengths. Thus, single-particle... [Pg.117]

Caustic Waterflooding. In caustic waterflooding, the interfacial rheologic properties of a model crude oil-water system were studied in the presence of sodium hydroxide. The interfacial viscosity, the non-Newtonian flow behavior, and the activation energy of viscous flow were determined as a function of shear rate, alkali concentration, and aging time. The interfacial viscosity drastically... [Pg.224]

D is a characteristic length jG, jL are the volume fluxes of the gas and liquid, respectively and m, C are constants. For turbulent flow, m is equal to unity. The value of C is found to depend on the design of the ends of the tubes and the way in which the liquid and gas are added and extracted. It may have values ranging from 0.725 to 1. For viscous flow in a liquid, m and C are functions of the dimensionless inverse viscosity, NF, where... [Pg.210]

The addition of a flux results not only in a mixture of silica and flux having a lower melting temperature than that of the silica, but also in the melt being less viscous, flowing more easily than silica (viscosity is a measure of the resistance of fluids, liquids, and also gases, to flow fluids with high viscosity flow more slowly than do those with low viscosity). As a consequence of its relatively low viscosity, the hot molten mixture of silica and flux, a type of early glass, can be shaped with relative ease. [Pg.142]

Molecular rotors are fluorophores characteristic for having a fluorescent quantum yield that strongly depends on the viscosity of the solvent [50], This property relies on the ability to resume a twisted conformation in the excited state (twisted intramolecular charge transfer or TICT state) that has a lower energy than the planar conformation. The de-excitation from the twisted conformation happens via a non-radiative pathway. Since the formation of the TICT state is favored in viscous solvents or at low temperature, the probability of fluorescence emission is reduced under those conditions [51]. Molecular rotors have been used as viscosity and flow sensors for biological applications [52], Modifications on their structure have introduced new reactivity that might increase the diversity of their use in the future [53] (see Fig. 6.7). [Pg.249]

That particular combination of properties possessed by high polymers, characterising the rubber-like state. Depending on the temperature and the time of stressing, a high polymer may show viscous flow or high elasticity. See Elasticity, Glass Transition, Thixotropy and Viscosity. [Pg.70]

Free energies of activation for viscous flow, AGflow, calculated from surface viscosities t),. These films were too unstable to allow viscosity measurements. [Pg.120]


See other pages where Viscosity/viscous flow is mentioned: [Pg.136]    [Pg.59]    [Pg.177]    [Pg.504]    [Pg.476]    [Pg.199]    [Pg.200]    [Pg.375]    [Pg.73]    [Pg.170]    [Pg.269]    [Pg.141]    [Pg.712]    [Pg.714]    [Pg.321]    [Pg.321]    [Pg.38]    [Pg.108]    [Pg.1061]    [Pg.395]    [Pg.15]    [Pg.105]    [Pg.178]    [Pg.198]   
See also in sourсe #XX -- [ Pg.93 ]




SEARCH



Viscosity Viscous

Viscous flow

© 2024 chempedia.info