Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interface viscosity

In general, there is no correlation between the tension and the shear viscosity of an oil-water interface. However, for systems containing demulsifiers, a low interfacial tension (IFT) often leads to a lowering of the shear viscosity. Demulsifiers, in general, are large disordered molecules and when they are present at the interface they create a mobile, low viscosity zone. However, a low IFT is not a necessary condition for a low viscosity interface. A large demulsifier such as PI, although not very surface active, can still lower the shear viscosity to a very low value (Table I). [Pg.368]

It was made clear in Chapter II that the surface tension is a definite and accurately measurable property of the interface between two liquid phases. Moreover, its value is very rapidly established in pure substances of ordinary viscosity dynamic methods indicate that a normal surface tension is established within a millisecond and probably sooner [1], In this chapter it is thus appropriate to discuss the thermodynamic basis for surface tension and to develop equations for the surface tension of single- and multiple-component systems. We begin with thermodynamics and structure of single-component interfaces and expand our discussion to solutions in Sections III-4 and III-5. [Pg.48]

In the context of the structural perturbations at fluid-solid interfaces, it is interesting to investigate the viscosity of thin liquid films. Eaily work on thin-film viscosity by Deijaguin and co-workers used a blow off technique to cause a liquid film to thin. This work showed elevated viscosities for some materials [98] and thin film viscosities lower than the bulk for others [99, 100]. Some controversial issues were raised particularly regarding surface roughness and contact angles in the experiments [101-103]. Entirely different types of data on clays caused Low [104] to conclude that the viscosity of interlayer water in clays is greater than that of bulk water. [Pg.246]

Most properties of linear polymers are controlled by two different factors. The chemical constitution of tire monomers detennines tire interaction strengtli between tire chains, tire interactions of tire polymer witli host molecules or witli interfaces. The monomer stmcture also detennines tire possible local confonnations of tire polymer chain. This relationship between the molecular stmcture and any interaction witli surrounding molecules is similar to tliat found for low-molecular-weight compounds. The second important parameter tliat controls polymer properties is tire molecular weight. Contrary to tire situation for low-molecular-weight compounds, it plays a fimdamental role in polymer behaviour. It detennines tire slow-mode dynamics and tire viscosity of polymers in solutions and in tire melt. These properties are of utmost importance in polymer rheology and condition tlieir processability. The mechanical properties, solubility and miscibility of different polymers also depend on tlieir molecular weights. [Pg.2514]

The Ferranti-Shidey viscometer was the first commercial general-purpose cone—plate viscometer many of the instmments stiU remain in use in the 1990s. Viscosities of 20 to 3 x 10 mPa-s can be measured over a shear rate range of 1.8-18, 000 and at up to 200°C with special ceramic cones. Its features include accurate temperature measurement and good temperature control (thermocouples are embedded in the water-jacketed plate), electrical sensing of cone—plate contact, and a means of adjusting and locking the position of the cone and the plate in such a way that these two just touch. Many of the instmments have been interfaced with computers or microprocessors. [Pg.188]

The hot-water separation process involves extremely compHcated surface chemistry with interfaces among various combinations of soUds (including both silica sand and alurninosilicate clays), water, bitumen, and air. The control of pH is critical. The preferred range is 8.0—8.5, achievable by use of any of the monovalent bases. Polyvalent cations must be excluded because they tend to flocculate clays and thus raise viscosity of the middlings in the separation cell. [Pg.359]

The effects of a solvent on growth rates have been attributed to two sets of factors (28) one has to do with the effects of solvent on mass transfer of the solute through adjustments in viscosity, density, and diffusivity the second is concerned with the stmcture of the interface between crystal and solvent. The analysis (28) concludes that a solute-solvent system that has a high solubiUty is likely to produce a rough interface and, concomitandy, large crystal growth rates. [Pg.345]

Data on the gas-liquid or vapor-liquid equilibrium for the system at hand. If absorption, stripping, and distillation operations are considered equilibrium-limited processes, which is the usual approach, these data are critical for determining the maximum possible separation. In some cases, the operations are are considerea rate-based (see Sec. 13) but require knowledge of eqmlibrium at the phase interface. Other data required include physical properties such as viscosity and density and thermodynamic properties such as enthalpy. Section 2 deals with sources of such data. [Pg.1350]

FIG. 14-115 Experimental collection efficiencies of rectangular impactors. C is the Stokes-Ciinningbam correction factor Pp, particle density, g/ond U, superficial gas velocity, approaching the impactor openings, cm/s and ig, gas viscosity, P. Calveri, Yung, and Leung, NTIS Puhl. PB-24S050 based on Mercer and Chow, J. Coll. Interface Sci., 27, 75 (1.96S).]... [Pg.1432]

For many laboratoiy studies, a suitable reactor is a cell with independent agitation of each phase and an undisturbed interface of known area, like the item shown in Fig. 23-29d, Whether a rate process is controlled by a mass-transfer rate or a chemical reaction rate sometimes can be identified by simple parameters. When agitation is sufficient to produce a homogeneous dispersion and the rate varies with further increases of agitation, mass-transfer rates are likely to be significant. The effect of change in temperature is a major criterion-, a rise of 10°C (18°F) normally raises the rate of a chemical reaction by a factor of 2 to 3, but the mass-transfer rate by much less. There may be instances, however, where the combined effect on chemical equilibrium, diffusivity, viscosity, and surface tension also may give a comparable enhancement. [Pg.2116]

Quantum well interface roughness Carrier or doping density Electron temperature Rotational relaxation times Viscosity Relative quantity Molecular weight Polymer conformation Radiative efficiency Surface damage Excited state lifetime Impurity or defect concentration... [Pg.377]

It is particularly significant that no evidence is found for localized melting at particle interfaces in the inorganic materials studied. Apparently, effects commonly observed in dynamic compaction of low shock viscosity metals are not obtained in the less viscous materials of the present study. To successfully predict the occurrence of localized melting, it appears necessary to develop a more realistic physical model of energy localization in shock-compressed powders. [Pg.171]

The numerical solution of these equations is not trivial, since for reasonably low viscosities the flow becomes turbulent. A popular method of treating these equations (together with the equations of energy and mass conservation) is the MAC method [156,157]. For the case of immiscible fluids or moving internal interface a phase-field-type approach seems to be successful [78,158,159]. Because of the enormous requirements of computing ressources the development in this field is still relatively slow. We expect, however, an impact from the more widespread availability of massively parallel computers in the near future. [Pg.904]


See other pages where Interface viscosity is mentioned: [Pg.280]    [Pg.280]    [Pg.120]    [Pg.151]    [Pg.334]    [Pg.552]    [Pg.2612]    [Pg.76]    [Pg.230]    [Pg.348]    [Pg.87]    [Pg.431]    [Pg.432]    [Pg.320]    [Pg.34]    [Pg.184]    [Pg.189]    [Pg.357]    [Pg.533]    [Pg.545]    [Pg.163]    [Pg.352]    [Pg.530]    [Pg.1418]    [Pg.1418]    [Pg.1442]    [Pg.1471]    [Pg.329]    [Pg.336]    [Pg.4]    [Pg.694]    [Pg.777]    [Pg.464]    [Pg.37]    [Pg.580]    [Pg.586]    [Pg.586]   
See also in sourсe #XX -- [ Pg.212 ]

See also in sourсe #XX -- [ Pg.212 ]




SEARCH



Viscosity liquid-solid interface

© 2024 chempedia.info