Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vinyl acetate solubilities

Poly(vinyl alcohol) is a useful water soluble polymer It cannot be prepared directly from vinyl alcohol because of the rapidity with which vinyl alcohol (H2C=CHOH) isomenzes to acetaldehyde Vinyl acetate however does not rearrange and can be polymerized to poly(vinyl acetate) How could you make use of this fact to prepare poly(vinyl alcohol)" ... [Pg.883]

Cellulosics. CeUulosic adhesives are obtained by modification of cellulose [9004-34-6] (qv) which comes from cotton linters and wood pulp. Cellulose can be nitrated to provide cellulose nitrate [9004-70-0] which is soluble in organic solvents. When cellulose nitrate is dissolved in amyl acetate [628-63-7] for example, a general purpose solvent-based adhesive which is both waterproof and flexible is formed. Cellulose esterification leads to materials such as cellulose acetate [9004-35-7], which has been used as a pressure-sensitive adhesive tape backing. Cellulose can also be ethoxylated, providing hydroxyethylceUulose which is useful as a thickening agent for poly(vinyl acetate) emulsion adhesives. Etherification leads to materials such as methylceUulose [9004-67-5] which are soluble in water and can be modified with glyceral [56-81-5] to produce adhesives used as wallpaper paste (see Cellulose esters Cellulose ethers). [Pg.234]

The metals are impregnated together or separately from soluble species, eg, Na2PdCl4 and HAuCl or acetates (159), and are fixed by drying or precipitation prior to reduction. In some instances sodium or potassium acetate is added as a promoter (160). The reaction of acetic acid, ethylene, and oxygen over these catalysts at ca 180°C and 618—791 kPa (75—100 psig) results in the formation of vinyl acetate with 92—94% selectivity the only other... [Pg.385]

An a priori method for choosing a surfactant was attempted by several researchers (50) using the hydroph i1 e—1 ip oph i1 e balance or HLB system (51). In the HLB system a surfactant soluble in oil has a value of 1 and a surfactant soluble in water has a value of 20. Optimum HLB values have been reported for latices made from styrene, vinyl acetate, methyl methacrylate, ethyl acrylate, acrylonitrile, and their copolymers and range from 11 to 18. The HLB system has been criticized as being imprecise (52). [Pg.25]

Almost all synthetic binders are prepared by an emulsion polymerization process and are suppHed as latexes which consist of 48—52 wt % polymer dispersed in water (101). The largest-volume binder is styrene—butadiene copolymer [9003-55-8] (SBR) latex. Most SBRlatexes are carboxylated, ie, they contain copolymerized acidic monomers. Other latex binders are based on poly(vinyl acetate) [9003-20-7] and on polymers of acrylate esters. Poly(vinyl alcohol) is a water-soluble, synthetic biader which is prepared by the hydrolysis of poly(viayl acetate) (see Latex technology Vinyl polymers). [Pg.22]

Suspension Polymerization. At very low levels of stabilizer, eg, 0.1 wt %, the polymer does not form a creamy dispersion that stays indefinitely suspended in the aqueous phase but forms small beads that setde and may be easily separated by filtration (qv) (69). This suspension or pearl polymerization process has been used to prepare polymers for adhesive and coating appHcations and for conversion to poly(vinyl alcohol). Products in bead form are available from several commercial suppHers of PVAc resins. Suspension polymerizations are carried out with monomer-soluble initiators predominantly, with low levels of stabilizers. Suspension copolymerization processes for the production of vinyl acetate—ethylene bead products have been described and the properties of the copolymers determined (70). Continuous tubular polymerization of vinyl acetate in suspension (71,72) yields stable dispersions of beads with narrow particle size distributions at high yields. [Pg.465]

Poly(vinyl acetate) chains are also stabilized as aqueous-soluble anionic species by complexation with a surfactant. The charge on the water-soluble species prevents their absorption into the particle (114). [Pg.466]

The kinetics of vinyl acetate emulsion polymeriza tion in the presence of alkyl phenyl ethoxylate surfactants of various chain lengths indicate that part of the emulsion polymerization occurs in the aqueous phase and part in the particles (115). A study of the emulsion polymerization of vinyl acetate in the presence of sodium lauryl sulfate reveals that a water-soluble poly(vinyl acetate)—sodium dodecyl sulfate polyelectrolyte complex forms, and that latex stabihty, polymer hydrolysis, and molecular weight are controlled by this phenomenon (116). [Pg.466]

When more than routine water resistance is required, a copolymer vinyl acetate emulsion can be used. The plasticizing comonomer in the polymer particles increases their intrinsic coalescing ability thus, they can coalesce more readily than homopolymer particles to a film that has a higher resistance to water. This resistance to water does not extend to the organic solvents, however, which are better resisted by homopolymer films. The soft copolymers have lower solubility parameters than homopolymers and are more readily attacked by solvents of low polarity, eg, hydrocarbons. [Pg.469]

The emulsion formulations are generally appHed to cloth by padding from a bath and squeezing off the excess. Modifying a formulation in the pad box, eg, to increase or decrease firmness, can be easily done by adding an emulsion or softener. The alkaH-soluble vinyl acetate copolymers previously mentioned can be used as warp sizes during weaving. [Pg.471]

Poly(viayl alcohol) (PVA), a polyhydroxy polymer, is the largest-volume synthetic, water-soluble resin produced in the world. It is commercially manufactured by the hydrolysis of poly(vinyl acetate), because monomeric vinyl alcohol caimot be obtained in quantities and purity that makes polymerisation to poly(vinyl alcohol) feasible (1 3). [Pg.475]

Poly(Vinylpyrrolidinone-CO Vinyl Acetate). The first commercially successful class of VP copolymers, poly(vinylpyrroHdinone-co-vinyl acetate) is currently manufactured in sizeable quantities by both ISP and BASF. A wide variety of compositions and molecular weights are available as powders or as solutions in ethanol, isopropanol, or water (if soluble). Properties of some examples of this class of copolymers are Hsted in Table 15. [Pg.532]

Several cleaning formulations for specific uses contain unreacted polyamines. Examples include mixtures of ammonium alkylbenzenesulfonate, solvents, and PIP which give good cleaning and shine performance on mirrors and other hard surfaces without rinsing (305), and a hard-surface cleaner composed of a water-soluble vinyl acetate—vinyl alcohol copolymer, EDA, cyclohexanone [108-94-1] dimethyl sulfoxide [67-68-5] a surfactant, and water (306). TEPA, to which an average of 17 moles of ethylene oxide are added, improves the clay sod removal and sod antiredeposition properties of certain hquid laundry detergents (307). [Pg.48]

Ethylene has also been copolymerised with a number of non-olefinic monomers and of the copolymers produced those with vinyl acetate have so far proved the most significant commercially . The presence of vinyl acetate residues in the chain reduces the polymer regularity and hence by the vinyl acetate content the amount of crystallinity may be controlled. Copolymers based on 45% vinyl acetate are rubbery and may be vulcanised with peroxides. They are commercially available (Levapren). Copolymers with about 30% vinyl acetate residues (Elvax-Du Pont) are flexible resins soluble in toluene and benezene at room temperature and with a tensile strength of about lOOOlbf/in (6.9 MPa) and a density of about 0.95 g/cm. Their main uses are as wax additives and as adhesive ingredients. [Pg.276]

Since poly(vinyl acetate) is usually used in an emulsion form, the emulsion polymerisation process is commonly used. In a typical system, approximately equal quantities of vinyl acetate and water are stirred together in the presence of a suitable colloid-emulsifier system, such as poly(vinyl alcohol) and sodium lauryl sulphate, and a water-soluble initiator such as potassium persulphate. [Pg.388]

Vinyl acetate -8 CH3C00CH CH2 427 2.6-13.4 1.1 3.0 72 Colourless, partially water soluble liquid Faint odour Polymerizes with heat or organic peroxides... [Pg.251]

As pointed out earlier, acrylics differ from the commonly used rubber precursors for PSA formulation in the fact that they often incorporate polar monomers, such as acrylic acid, A-vinyl pyrrolidone, vinyl acetate, or acrylamide. As a result, the solubility parameters of acrylic polymers are typically higher than those of rubbers, like polyisoprenes or polybutadienes. [Pg.503]

Suspension polymerization produces beads of plastic for styrene, methyl methacrviaie. viny l chloride, and vinyl acetate production. The monomer, in which the catalyst must be soluble, is maintained in droplet fonn suspended in water by agitation in the presence of a stabilizer such as gelatin each droplet of monomer undergoes bulk polymerization. In emulsion polymerization, ihe monomer is dispersed in water by means of a surfactant to form tiny particles held in suspension I micellcsK The monomer enters the hydrocarbon part of the micelles for polymerization by a... [Pg.277]

Copolymers of vinyl chloride, containing 5 to 40 percent vinyl acetate made by the inclusion of vinyl acetate in the polymerization process, have lower softening points and flow more easily than polyvinyl chloride. They are soluble in ketones, such as acetone, and certain esters for making film from solutions. They are used for phonograph records, rigid clear sheeting, and molding pov... [Pg.281]

An interesting application of this reaction was the use of macro-molecular anhydrides, namely, styrene-maleic anhydride or vinyl acetate-maleic anhydride copolymers in the presence of perchloric acid as catalyst, these copolymers acylate mesityl oxide or d rpnone to macromolecular pyrylium salts which, with aryl substituents, are fluorescent.No crystalline products could be obtained from succinic anhydride because of the solubility and ease of decarboxylation. [Pg.285]

The free radical initiators are more suitable for the monomers having electron-withdrawing substituents directed to the ethylene nucleus. The monomers having electron-supplying groups can be polymerized better with the ionic initiators. The water solubility of the monomer is another important consideration. Highly water-soluble (relatively polar) monomers are not suitable for the emulsion polymerization process since most of the monomer polymerizes within the continuous medium, The detailed emulsion polymerization procedures for various monomers, including styrene [59-64], butadiene [61,63,64], vinyl acetate [62,64], vinyl chloride [62,64,65], alkyl acrylates [61-63,65], alkyl methacrylates [62,64], chloroprene [63], and isoprene [61,63] are available in the literature. [Pg.198]


See other pages where Vinyl acetate solubilities is mentioned: [Pg.897]    [Pg.897]    [Pg.417]    [Pg.316]    [Pg.233]    [Pg.278]    [Pg.514]    [Pg.320]    [Pg.81]    [Pg.363]    [Pg.455]    [Pg.458]    [Pg.461]    [Pg.463]    [Pg.463]    [Pg.464]    [Pg.465]    [Pg.466]    [Pg.470]    [Pg.471]    [Pg.489]    [Pg.176]    [Pg.134]    [Pg.484]    [Pg.11]    [Pg.207]   
See also in sourсe #XX -- [ Pg.25 , Pg.559 ]




SEARCH



Acetates, solubility

Vinyl solubilities

© 2024 chempedia.info