Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vaporizing laser beam

Fig. 2 Schematic diagram of the pulsed supersonic nozzle used to generate carbon cluster beams. The integrating cup can be removed at the indicated line. The vaporization laser beam (30-40 mJ at 532 nm in a 5-ns pulse) is focused through the nozzle, striking a graphite disk which is rotated slowly to produce a smooth vaporization surface. The pulsed nozzle passes high-density helium over this vaporization zone. This helium carrier gas provides the thermalizing collisions necessary to cool, react and cluster the species in the vaporized graphite plasma, and the wind necessary to carry the cluster products through the remainder of the nozzle. Free expansion of this cluster-laden gas at the end of the nozzle forms a supersonic beam which is probed 1.3 m downstream with a time-of-flight mass spectrometer. Fig. 2 Schematic diagram of the pulsed supersonic nozzle used to generate carbon cluster beams. The integrating cup can be removed at the indicated line. The vaporization laser beam (30-40 mJ at 532 nm in a 5-ns pulse) is focused through the nozzle, striking a graphite disk which is rotated slowly to produce a smooth vaporization surface. The pulsed nozzle passes high-density helium over this vaporization zone. This helium carrier gas provides the thermalizing collisions necessary to cool, react and cluster the species in the vaporized graphite plasma, and the wind necessary to carry the cluster products through the remainder of the nozzle. Free expansion of this cluster-laden gas at the end of the nozzle forms a supersonic beam which is probed 1.3 m downstream with a time-of-flight mass spectrometer.
Laser desorption to produce ions for mass spectrometric analysis is discussed in Chapter 2. As heating devices, lasers are convenient when much energy is needed in a very small space. A typical laser power is 10 ° W/cm. When applied to a solid, the power of a typical laser beam — a few tens of micrometers in diameter — can lead to very strong localized heating that is sufficient to vaporize the solid (ablation). Some of the factors controlling heating with lasers and laser ablation are covered in Figure 17.2. [Pg.111]

Suffice it to say at this stage that the surfaces of most solids subjected to such laser heating will be heated rapidly to very high temperatures and will vaporize as a mix of gas, molten droplets, and small particulate matter. For ICP/MS, it is then only necessary to sweep the ablated aerosol into the plasma flame using a flow of argon gas this is the basis of an ablation cell. It is usual to include a TV monitor and small camera to view the sample and to help direct the laser beam to where it is needed on the surface of the sample. [Pg.112]

Vapor—vapor reactions (14,16,17) are responsible for the majority of ceramic powders produced by vapor-phase synthesis. This process iavolves heating two or more vapor species which react to form the desired product powder. Reactant gases can be heated ia a resistance furnace, ia a glow discharge plasma at reduced pressure, or by a laser beam. Titania [13463-67-7] Ti02, siUca, siUcon carbide, and siUcon nitride, Si N, are among some of the technologically important ceramic powders produced by vapor—vapor reactions. [Pg.306]

In Surface Analysis by Laser Ionization (SALI), a probe beam such as an ion beam, electron beam, or laser is directed onto a surfiice to remove a sample of material. An untuned, high-intensity laser beam passes parallel and close to but above the sur-fiice. The laser has sufficient intensity to induce a high degree of nonresonant, and hence nonselective, photoionization of the vaporized sample of material within the laser beam. The nonselectively ionized sample is then subjected to mass spectral analysis to determine the nature of the unknown species. SALI spectra accurately reflect the surface composition, and the use of time-of-flight mass spectrometers provides fast, efficient and extremely sensitive analysis. [Pg.42]

The most widely deposition technique is the ion assisted deposition (lAD). A material in a melting-pot is vaporized by heating either with an electron beam, or by Joule effect, or with a laser beam, or with microwaves, or whatever else. The vapor flow condensates on the substrate. In the same time, an ion... [Pg.335]

Since the demonstration by Schumacher et al ) of the use of alkali metal vapor inclusion into a supersonic beam to produce clusters, there have been a number of attempts to generalize the approach. It has recently been recognized that instead of high temperature ovens, with their concommitant set of complex experimental problems, an intense pulsed laser beam focused on a target could be effectively used to produce metal atoms in the throat of a supersonic expansion valve. ) If these atoms are injected into a high pressure inert gas, such as helium, nucleation to produce clusters occurs. This development has as its most important result that clusters of virtually any material now can be produced and studied with relative ease. [Pg.111]

Another thin film technology based nanoparticle preparation route is gas condensation, in which metal vapor is cooled to high levels of supersaturation in an inert gas ambient [126-128]. In these experiments particles necessarily nucleate in the gas phase. In a promising extension of this technique a pulsed laser beam replaces the conventionally used thermal metal vapor source [120,121,129-134]. [Pg.90]

Laser-induced electronic fluorescence. Two devices reported recently look very promising for continuous atmospheric monitoring. Sensitivities of 0.6 ppb for nitrogen dioxide and ppb for formaldehyde are claimed. Careful attention to possible interference from other species is necessary. Detection of the hydroxyl radical in air ( 10 molecules/cm ) has been claimed for this technique, but it has been pointed out that this concentration seems much too high, especially because the air had been removed fix>m the sunlight 6 s before analysis spurious effects, such as photolysis of the ozone in the air by the laser beam and two-photon absorption by water vapor, might have been responsible for the hydroxyl radical that was observed. [Pg.36]

In spite of the fact that in alkali vapors, which contain about 1 % diatomic alkali-molecules at a total vapor-pressure of 10 torr, the atoms cannot absorb laser lines (because there is no proper resonance transition), atomic fluorescence lines have been observed 04) upon irradiating the vapor cell with laser light. The atomic excited states can be produced either by collision-induced dissociation of excited molecules or by photodissociation from excited molecular states by a second photon. The latter process is not improbable, because of the large light intensities in the exciting laser beam. These questions will hopefully be solved by the investigations currently being performed in our laboratory. [Pg.32]

Ullrafine particles (UFPs) of metal and semiconductor nitrides have been synthesized by two major techniques one is the reactive gas condensation method, and the other is the chemical vapor condensation method. The former is modified from the so-called gas condensation method (or gas-evaporation method) (13), and a surrounding gas such as N2 or NII2 is used in the evaporation chamber instead of inert gases. Plasma generation has been widely adopted in order to enhance the nitridation in the particle formation process. The latter is based on the decomposition and the subsequent chemical reaction of metal chloride, carbonate, hydride, and organics used as raw materials in an appropriate reactive gas under an energetic environment formed mainly by thermal healing, radiofrequency (RF) plasma, and laser beam. Synthesis techniques are listed for every heal source for the reactive gas condensation method and for the chemical vapor condensation method in Tables 8.1.1 and 8.1.2, respectively. [Pg.406]

All the methods used to evaporate metals for atom synthesis were developed originally for the deposition of thin metal films. The more important of these techniques are shown schematically in Fig. la-d. Most of the evaporation devices can be scaled to give amounts of metal ranging from a few milligrams per hour for spectroscopic studies to 1-50 gm/hour for preparative synthetic purposes. Evaporation of metals from heated crucibles, boats, or wires (Fig. la-c) generally gives metal atoms in their ground electronic state. Electronic excitation of atoms is possible when metals are vaporized from arcs, by electron bombardment, or with a laser beam (Fig. Id). The lifetime of the excited states of... [Pg.55]

CL Cocondensation of the vapor of a compound and a metal vapor formed by laser beam evaporation of the metal... [Pg.88]


See other pages where Vaporizing laser beam is mentioned: [Pg.357]    [Pg.407]    [Pg.357]    [Pg.407]    [Pg.2389]    [Pg.7]    [Pg.135]    [Pg.399]    [Pg.399]    [Pg.178]    [Pg.12]    [Pg.13]    [Pg.19]    [Pg.19]    [Pg.397]    [Pg.21]    [Pg.440]    [Pg.563]    [Pg.162]    [Pg.209]    [Pg.212]    [Pg.221]    [Pg.284]    [Pg.349]    [Pg.379]    [Pg.21]    [Pg.73]    [Pg.412]    [Pg.54]    [Pg.156]    [Pg.169]    [Pg.22]    [Pg.155]    [Pg.49]    [Pg.82]    [Pg.253]    [Pg.683]    [Pg.422]    [Pg.528]   
See also in sourсe #XX -- [ Pg.216 ]




SEARCH



Laser beams

Laser vaporization

Laser vapors

© 2024 chempedia.info