Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vanadium, redox reactions

H. Kaneko, K. Nozaki, Y. Wada, T. Aoki, A. Negishi and M. Kamimoto, Vanadium redox reactions and carbon electrodes for vanadium redox flow battery, Electrochim. Acta 36,1991,1191-1196. [Pg.390]

Redox flow batteries, under development since the early 1970s, are stUl of interest primarily for utility load leveling applications (77). Such a battery is shown schematically in Figure 5. Unlike other batteries, the active materials are not contained within the battery itself but are stored in separate tanks. The reactants each flow into a half-ceU separated one from the other by a selective membrane. An oxidation and reduction electrochemical reaction occurs in each half-ceU to generate current. Examples of this technology include the iron—chromium, Fe—Cr, battery (79) and the vanadium redox cell (80). [Pg.587]

The lower oxidation states are stabilized by soft ligands e.g. CO (Prob. 3). The aquated vanadium ions represent an interesting series of oxidation states. They are all stable with respect to disproportionation and labile towards substitution. They undergo a number of redox reactions with one another, all of which have been studied kinetically. Many of the reactions are [H ]-dependent. There has been recent interest in the biological aspects of vanadium since the discovery that vanadate can mimic phosphate and act as a potent inhibitor (Prob. 4). [Pg.375]

All oxidation reactions are coupled to reduction reactions. In many cases redox reactions can also involve or be affected by changes in the surrounding environment, such as changes in the pH or temperature (i.e., endothermic or exothermic reactions). Many elements in the subsurface can exist in various oxidation states, some examples include elements like carbon, nitrogen, oxygen, sulfur, iron, cobalt, vanadium, and nickel. [Pg.40]

The potentially serious aspects of vanadium pollution, the function of biologically occurring enzyme systems, the role of vanadium on the function of numerous enzymes, and the associated role in the insulin-mimetic vanadium compounds are inextricably linked. The key to our understanding all such functionality relies on understanding the basic chemistry that underlies it. This chemistry is determined to a significant extent by the V(IV) and V(V) oxidation states but clearly is not restricted to these states. Indeed, the redox interplay between the vanadium oxidation states can be a critical aspect of the biological functionality of vanadium, particularly in enzymes such as the vanadium-dependent nitrogenases, where redox reactions are the basis of the enzyme functionality. [Pg.2]

A ubiquitous characteristic of vanadium chemistry is the fact that vanadium and many of its complexes readily enter into redox reactions. Adjustment of pH, concentration, and even temperature have often been employed in order to extend or maintain system integrity of a specific oxidation state. On the other hand, deliberate attempts to use redox properties, particularly in catalytic reactions, have been highly successful. Vanadium redox has also been successfully utilized in development of a redox battery. This battery employs the V(V)/V(IV) and V(III)AT(II) redox couples in 2.5 M sulfuric acid as the positive and negative half-cell electrolytes, respectively. Scheme 12.2 gives a representation of the battery. The vanadium components in both redox cells are prepared from vanadium pentoxide. There are two charge-discharge reactions occurring in the vanadium redox cells, as indicated in Equation 12.1 and Equation 12.2. The thermodynamics of the redox reactions involved have been extensively studied [8],... [Pg.217]

This book does not follow a chronological sequence but rather builds up in a hierarchy of complexity. Some basic principles of 51V NMR spectroscopy are discussed this is followed by a description of the self-condensation reactions of vanadate itself. The reactions with simple monodentate ligands are then described, and this proceeds to more complicated systems such as diols, -hydroxy acids, amino acids, peptides, and so on. Aspects of this sequence are later revisited but with interest now directed toward the influence of ligand electronic properties on coordination and reactivity. The influences of ligands, particularly those of hydrogen peroxide and hydroxyl amine, on heteroligand reactivity are compared and contrasted. There is a brief discussion of the vanadium-dependent haloperoxidases and model systems. There is also some discussion of vanadium in the environment and of some technological applications. Because vanadium pollution is inextricably linked to vanadium(V) chemistry, some discussion of vanadium as a pollutant is provided. This book provides only a very brief discussion of vanadium oxidation states other than V(V) and also does not discuss vanadium redox activity, except in a peripheral manner where required. It does, however, briefly cover the catalytic reactions of peroxovanadates and haloperoxidases model compounds. [Pg.257]

Also, coordination compounds and metal carbonyls are able to undergo a PET, resulting in initiating radicals [63]. Recently investigated examples are iron chloride based ammonium salts [149], vanadium(V) organo-metallic complexes [150], and metal sulfoxide complexes [151]. However, the polymerization efficiency of some systems is only low due to redox reactions between the central metal ion and the growing polymer radical, and the low quantum yields of PET. [Pg.189]

In addition to the structure in the dehydrated state, the structure of supported vanadia catalysts under redox reaction conditions is directly related to the catalytic performance. Vanadia catalysts are usually reduced to some extent during a redox reaction, and the reduced vanadia species have been proposed as the active sites [4, 19-24]. Therefore, information on the valence state and molecular structure of the reduced vanadia catalysts is of great interest. A number of techniques have been applied to investigate the reduction of supported vanadia catalysts, such as temperature programmed reduction (TPR) [25-27], X-ray photoelectron spectroscopy (XPS) [21], electron spin resonance (ESR) [22], UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) [18, 28-32], X-ray absorption fine structure spectroscopy (XAFS) [11] and Raman spectroscopy [5, 26, 33-41]. Most of these techniques give information only on the oxidation state of vanadium species. Although Raman spectroscopy is a powerful tool for characterization of the molecular structure of supported vanadia [4, 29, 42], it has been very difficult to detect reduced supported... [Pg.178]

Copper(II) and cerium(IV) have been studied as oxidants in acetonitrile. The copper(II)-copper(I) couple has an estimated electrode potential of 0.68 V relative to the silver reference electrode. It has been studied as an oxidant for substances such as iodide, hydroquinone, thiourea, potassium ethyl xanthate, diphenylbenzidine, and ferrocene. Cerium(IV) reactions are catalyzed by acetate ion. Copper(I) is a suitable reductant for chromium(VI), vanadium(V), cerium(IV), and manganese(VII) in the presence of iron(III). For details on many studies of redox reactions in nonaqueous solvents, the reader is referred to the summary by Kratochvil. ... [Pg.294]

The simultaneous pre-concentration of manganese, chromium and vanadium is possible by combination of ion-exchange with redox reactions on a Fe(II)-treated resin Beside ion-exchange chromatography reversed-phase methods are very important for trace enrichments On inert materials (e. g. PTFA, Tef-... [Pg.194]

The redox reactivity of divanadium salen615 and other complexes555 have been investigated. Disproportionation of [ V(salen) 2(//-0)] was observed under electrochemical conditions.6 The reduced, [Vin(salen)]+ complex was found to be the essential species in the catalysis of the electroreduction of 02 by four electrons in CH2C12.616 While [ V(salcn) 2(/x-0)] was proposed to be the active species in the redox reaction, more recently [Vin(salen)]+ was identified as a reservoir from which the active species forms.616 Schiff base complexes encapsulated in zeolite Y are catalytically active in the oxidation of thioanisole with H202.14 Acid-promoted disproportionation of a Vlv phenolate under anaerobic conditions was proposed as a model reaction for the vanadium uptake in tunicates.139... [Pg.202]

Vanadium pentoxide xerogels are very reactive layered host materials which can be intercalated by various means such as cation-exchange, acid-base chemistry, or redox reactions. Vanadium pentoxide xerogel was prepared by polymerization of HVO3 after a few days of reaction at room temperature. The resultant xerogel... [Pg.733]

Colour systems suitable for use in the spectrophotometric method may also be formed in redox reactions. Some examples of such reactions are the oxidation of Mn(II) to Mn04" or Cr(III) to Cr04, oxidation of dimethylnaphthidine with vanadium(V) or chromium(VI), oxidation of o-tolidine with cerium(lV) or with chlorine. Examples of oxidation reactions are also the iodide methods, in which iodide ions are oxidized with bromine to give iodate ions which, in turn, react with the excess of iodide anions to form free iodine (see Chapter 25). A colour effect of reduction also occurs, for example, in determinations of Se and Te in the form of coloured sols produced in the reduction of Se(lV) or Te(IV) to their elementary forms. [Pg.46]


See other pages where Vanadium, redox reactions is mentioned: [Pg.70]    [Pg.368]    [Pg.369]    [Pg.70]    [Pg.368]    [Pg.369]    [Pg.242]    [Pg.588]    [Pg.177]    [Pg.314]    [Pg.184]    [Pg.556]    [Pg.154]    [Pg.173]    [Pg.174]    [Pg.194]    [Pg.200]    [Pg.277]    [Pg.7]    [Pg.5019]    [Pg.178]    [Pg.487]    [Pg.601]    [Pg.15]    [Pg.160]    [Pg.587]    [Pg.2511]    [Pg.333]    [Pg.1]    [Pg.198]    [Pg.198]    [Pg.27]   
See also in sourсe #XX -- [ Pg.339 ]




SEARCH



Vanadium redox

© 2024 chempedia.info