Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Valence standard

In practice, each CSF is a Slater determinant of molecular orbitals, which are divided into three types inactive (doubly occupied), virtual (unoccupied), and active (variable occupancy). The active orbitals are used to build up the various CSFs, and so introduce flexibility into the wave function by including configurations that can describe different situations. Approximate electronic-state wave functions are then provided by the eigenfunctions of the electronic Flamiltonian in the CSF basis. This contrasts to standard FIF theory in which only a single determinant is used, without active orbitals. The use of CSFs, gives the MCSCF wave function a structure that can be interpreted using chemical pictures of electronic configurations [229]. An interpretation in terms of valence bond sti uctures has also been developed, which is very useful for description of a chemical process (see the appendix in [230] and references cited therein). [Pg.300]

The concept of biradicals and biradicaloids was often used in attempts to account for the mechanism of photochemical reactions [2,20,129-131]. A biradical (or diradical) may be defined as [132] an even-electron molecule that has one bond less than the number permitted by the standard rules of valence. [Pg.388]

To date there is no evidence that sodium forms any chloride other than NaCl indeed the electronic theory of valency predicts that Na" and CU, with their noble gas configurations, are likely to be the most stable ionic species. However, since some noble gas atoms can lose electrons to form cations (p. 354) we cannot rely fully on this theory. We therefore need to examine the evidence provided by energetic data. Let us consider the formation of a number of possible ionic compounds and first, the formation of sodium dichloride , NaCl2. The energy diagram for the formation of this hypothetical compound follows the pattern of that for NaCl but an additional endothermic step is added for the second ionisation energy of sodium. The lattice energy is calculated on the assumption that the compound is ionic and that Na is comparable in size with Mg ". The data are summarised below (standard enthalpies in kJ) ... [Pg.75]

If the nttmber of valence electrons thus calculated does not agree with the standard number of valence electrons in an atom, this atom carries a charge, in this case, the diagonal element h, has more or fewer valence electrons than the nominal value of the respective atom i. The charge value, Ah, can be determined by subtracting the sum of the row values from the nominal value (Eq, (3)). [Pg.38]

Copper compounds, which represent only a small percentage of ah copper production, play key roles ia both iadustry and the biosphere. Copper [7440-50.8] mol wt = 63.546, [Ar]3/°4.t is a member of the first transition series and much of its chemistry is associated with the copper(II) ion [15158-11-9] [Ar]3i5. Copper forms compounds of commercial iaterest ia the +1 and +2 oxidation states. The standard reduction potentials, for the reasonably attainable valence states of copper are... [Pg.253]

Conflicting reports on the nitration of phenazine have appeared, but the situation was clarified by Albert and Duewell (47MI21400). The early work suggested that 1,3-dinitroph-enazine could be prepared in 66% yield under standard nitration conditions however, this proved to be a mixture of 1-nitrophenazine and 1,9-dinitrophenazine (24). As with pyrazines and quinoxalines, activating substituents in the benzenoid rings confer reactivity which is in accord with valence bond predictions thus, nitration of 2-methoxy- or 2-hydroxy-phenazine results in substitution at the 1-position. [Pg.164]

Diffuse functions are large-size versions of s- and p-type functions (as opposed to the standard valence-size functions). They allow orbitals to occupy a larger region of spgce. Basis sets with diffuse functions are important for systems where electrons are relatively far from the nucleus molecules with lone pairs, anions and other systems with significant negative charge, systems in their excited states, systems with low ionization potentials, descriptions of absolute acidities, and so on. [Pg.99]

Valence orbital Xij is the lowest energy solution of equation 9.23 only if there are no core orbitals with the same angular momentum quantum number. Equation 9.23 can be solved using standard atomic HF codes. Once these solutions are known, it is possible to construct a valence-only HF-like equation that uses an effective potential to ensure that the valence orbital is the lowest energy solution. The equation is written... [Pg.172]

The two elements have similar electronegativity. (Note electronegativity is the power of an element to attract electrons to itself when present in a molecule or in an aggregate of unlike atoms it is a different property from the electrode potential, which depends on the free energy difference between an element in its standard state and a compound or ion in solution (see Section 20.1).) In addition a metal of a lower valency tends to dissolve a metal of a higher valency more readily than vice versa. [Pg.1273]

Valence band spectra provide information about the electronic and chemical structure of the system, since many of the valence electrons participate directly in chemical bonding. One way to evaluate experimental UPS spectra is by using a fingerprint method, i.e., a comparison with known standards. Another important approach is to utilize comparison with the results of appropriate model quantum-chemical calculations 4. The combination with quantum-chcmica) calculations allow for an assignment of the different features in the electronic structure in terms of atomic or molecular orbitals or in terms of band structure. The experimental valence band spectra in some of the examples included in this chapter arc inteqneted with the help of quantum-chemical calculations. A brief outline and some basic considerations on theoretical approaches are outlined in the next section. [Pg.388]

The high sensitivity and selectivity of the EPR response enables diamagnetic systems to be doped with very low concentrations of paramagnetic ions, the fate of which can be followed during the progress of a reaction. The criteria [347] for the use of such tracer ions are that they should give a distinct EPR spectrum, occupy a single coordination site and have the same valency as, and a similar diffusion coefficient to, the host matrix ion. Kinetic data are usually obtained by comparison with standard materials. [Pg.31]

The uncertainties given are calculated standard deviations. Analysis of the interatomic distances yields a selfconsistent interpretation in which Zni is assumed to be quinquevalent and Znn quadrivalent, while Na may have a valence of unity or one as high as lj, the excess over unity being suggested by the interatomic distances and being, if real, presumably a consequence of electron transfer. A valence electron number of approximately 432 per unit cell is obtained, which is in good agreement with the value 428-48 predicted on the basis of a filled Brillouin polyhedron defined by the forms 444, 640, and 800. ... [Pg.597]

Until now, applications of semiempirical all-valence-electron methods have been rare, although the experimental data for a series of alkyl radicals are available (108,109). In Figure 9, we present the theoretical values of ionization potentials calculated (68) for formyl radical by the CNDO version of Del Bene and Jaffe (110), which is superior to the standard CNDO/2 method in estimation of ionization potentials of closed-shell systems (111). The first ionization potential is seen, in Figure 9, to agree fairly well with the experimental value. Similarly, good results were also obtained (113) with some other radicals (Table VII). [Pg.354]

Fig. 8. Scheme of the electronic structure of (A) [3Fe-4S] centers and (B) [4Fe-centers according to the standard model. The thin and thick dashed fines indicate the Emtiferromagnetic and double exchEmge coupling, respectively. Configurations a and b correspond to the two possible locations of the excess electron in the mixed-valence pair. In part (B), the local spin values are Sc = Sd = 2 in the case of [4Fe-4S] centers and Sc = Sd = i in the case of [4Fe-4S] + centers. [Pg.441]

XPS also yields chemical information directly. Eor instance, if an element in a sample exists in different valence states, the XPS peak may broaden and show a shoulder. It is possible to deconvolute the peaks and determine valence states and the relative amount of each state in the sample. It is important to do this type of work by comparison of values of standard reference compounds. [Pg.511]

In the model presented above the forward dark current corresponds to an electron transfer via the conduction band. Using, however, a redox couple of a relatively positive standard potential the empty states of the redox system occur rather close to the valence band and the cathodic current could be due to an electron transfer via the valence band as illustrated in Fig. 3 b. In this case one still obtains the same i — U characteristic but the saturation current is now given by... [Pg.87]


See other pages where Valence standard is mentioned: [Pg.107]    [Pg.107]    [Pg.307]    [Pg.2209]    [Pg.27]    [Pg.41]    [Pg.100]    [Pg.256]    [Pg.8]    [Pg.256]    [Pg.167]    [Pg.275]    [Pg.277]    [Pg.115]    [Pg.115]    [Pg.119]    [Pg.32]    [Pg.115]    [Pg.120]    [Pg.140]    [Pg.131]    [Pg.168]    [Pg.101]    [Pg.160]    [Pg.384]    [Pg.366]    [Pg.177]    [Pg.603]    [Pg.57]    [Pg.227]    [Pg.578]    [Pg.64]    [Pg.95]    [Pg.141]   
See also in sourсe #XX -- [ Pg.27 ]




SEARCH



Standard valency

© 2024 chempedia.info