Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Uncoupled solution

Piezoelectric solids are characterized by constitutive relations among the stress t, strain rj, entropy s, electric field E, and electric displacement D. When uncoupled solutions are sought, it is convenient to express t and D as functions of t], E, and s. The formulation of nonlinear piezoelectric constitutive relations has been considered by numerous authors (see the list cited in [77G06]), but there is no generally accepted form or notation. With some modification in notation, we adopt the definitions of thermodynamic potentials developed by Thurston [74T01]. This leads to the following constitutive relations ... [Pg.73]

Uncoupled solutions for current and electric field give simple and explicit descriptions of the response of piezoelectric solids to shock compression, but the neglect of the influence of the electric field on mechanical behavior (i.e., the electromechanical coupling effects) is a troublesome inconsistency. A first step toward an improved solution is a weak-coupling approximation in which it is recognized that the effects of coupling may be relatively small in certain materials and it is assumed that electromechanical effects can be treated as a perturbation on the uncoupled solution. [Pg.76]

The determination of piezoelectric constants from current pulses is based on interpretation of wave shapes in the weak-coupling approximation. It is of interest to use the wave shapes to evaluate the degree of approximation involved in the various models of piezoelectric response. Such an evaluation is shown in Fig. 4.5, in which normalized current-time wave forms calculated from various models are shown for x-cut quartz and z-cut lithium niobate. In both cases the differences between the fully coupled and weakly coupled solutions are observed to be about 1%, which is within the accuracy limits of the calculations. Hence, for both quartz and lithium niobate, weakly coupled solutions appear adequate for interpretation of observed current-time waveforms. On the other hand, the adequacy of the uncoupled solution is significantly different for the two materials. For x-cut quartz the maximum error of about 1%-1.5% for the nonlinear-uncoupled solution is suitable for all but the most precise interpretation. For z-cut lithium niobate the maximum error of about 8% for the nonlinear-uncoupled solution is greater than that considered acceptable for most cases. The linear-uncoupled solution is seriously in error in each case as it neglects both strain and coupling. [Pg.81]

In the Lagrangian frame, droplet trajectories in the spray may be calculated using Thomas 2-D equations of motion for a sphere 5791 or the simplified forms)154 1561 The gas velocity distribution in the spray can be determined by either numerical modeling or direct experimental measurements. Using the uncoupled solution approach, many CFD software packages or Navier-Stokes solvers can be used to calculate the gas velocity distribution for various process parameters and atomizer geometries/configurations. On the other hand, somesimple expressions for the gas velocity distribution can be derived from... [Pg.369]

For agiven system of metal/alloy and atomization gas, the 2-D velocity distributions of the gas and droplets in the spray can be then calculated using the above-described models, once the initial droplet sizes and velocities are known from the modeling of the atomization stage, as described in the previous subsection. With the uncoupled solution of the gas velocity field in the spray, the simplified Thomas 2-D nonlinear differential equations for droplet trajectories may be solved simultaneously using a 4th-orderRunge-Kutta algorithm, as detailed in Refs. 154 and 156. [Pg.371]

As with the uncoupled case, one solution involves diagonalizing the Liouville matrix, iL+R+K. If U is the matrix with the eigenvectors as cohmms, and A is the diagonal matrix with the eigenvalues down the diagonal, then (B2.4.32) can be written as (B2.4.33). This is similar to other eigenvalue problems in quantum mechanics, such as the transfonnation to nonnal co-ordinates in vibrational spectroscopy. [Pg.2100]

A comparison of Fig. 4 and Fig. 3 shows that this uncoupled QCMD bundle reproduces the disintegration of the full QD solution. However, there are minor quantitative differences of the statistical distribution. Fig. 5 depicts... [Pg.392]

Pig. 5. Comparison of the qi expectation value of the uncoupled QCMD bundle ([g]e o) and full QD ( q)qd) for the test system for e = 1/100 (pictures on top) and e = 1/500 (below). Initial data as in Fig. 3. The shaded domain indicates the funnel between the two curves Qbo and geo (cf. Thm. 5). The light dashed line shows Hagedorn s limit solution qna and the dense lines (q )Qo (left hand pictures) and [ ]e s (right hand pictures). [Pg.394]

The procedure we followed in the previous section was to take a pair of coupled equations, Eqs. (5-6) or (5-17) and express their solutions as a sum and difference, that is, as linear combinations. (Don t forget that the sum or difference of solutions of a linear homogeneous differential equation with constant coefficients is also a solution of the equation.) This recasts the original equations in the foiin of uncoupled equations. To show this, take the sum and difference of Eqs. (5-21),... [Pg.136]

Solution—Diffusion Model. In the solution—diffusion model, it is assumed that (/) the RO membrane has a homogeneous, nonporous surface layer (2) both the solute and solvent dissolve in this layer and then each diffuses across it (J) solute and solvent diffusion is uncoupled and each is the result of the particular material s chemical potential gradient across the membrane and (4) the gradients are the result of concentration and pressure differences across the membrane (26,30). The driving force for water transport is primarily a result of the net transmembrane pressure difference and can be represented by equation 5 ... [Pg.147]

Piezoelectric Response Uncoupled Short-Circuit Solution... [Pg.74]

Shock compression of piezoelectric solids, even under short-circuit conditions, causes large electric fields of varying amplitude and polarity within the material. In the uncoupled approximation to the solution of the short-circuit... [Pg.75]

Fig. 4.5. The degree of approximation for the increase of current in time for uncoupled and weakly coupled solutions for impact-loaded, x-cut quartz and z-cut lithium niobate is shown by comparison to the numerically predicted, fully coupled case. In the figure, the initial current is set to the value of 1.0 at the measured value (after Davison and Graham [79D01]). Fig. 4.5. The degree of approximation for the increase of current in time for uncoupled and weakly coupled solutions for impact-loaded, x-cut quartz and z-cut lithium niobate is shown by comparison to the numerically predicted, fully coupled case. In the figure, the initial current is set to the value of 1.0 at the measured value (after Davison and Graham [79D01]).
The specimen design used in the study by Rostoker et al. was such that it simulated both galvanic coupling and crevice conditions. Specimens were immersed in a 1% saline solution at 37 C, and examined by optical microscopy after exposures of a few to 100 days. No corrosion was observed on Ti-6A1-4V when the alloy was either uncoupled, coupled with itself (simple crevice). Or coupled with type 316L stainless steel, cast Co-Cr-Mo... [Pg.478]

We see from both equations 8.32 and 8.33 that the most unstable mode is the mode and that ai t) = 1 - 1/a is stable for 1 < a < 3 and ai t) = 0 is stable for 0 < a < 1. In other words, the diffusive coupling does not introduce any instability into the homogeneous system. The only instabilities present are those already present in the uncoupled local dynamics. A similar conclusion would be reached if we were to carry out the same analysis for period p solutions. The conclusion is that if the uncoupled sites are stable, so are the homogeneous states of the CML. Now what about inhomogeneous states ... [Pg.388]

The Rouse model, as given by the system of Eq, (21), describes the dynamics of a connected body displaying local interactions. In the Zimm model, on the other hand, the interactions among the segments are delocalized due to the inclusion of long range hydrodynamic effects. For this reason, the solution of the system of coupled equations and its transformation into normal mode coordinates are much more laborious than with the Rouse model. In order to uncouple the system of matrix equations, Zimm replaced S2U by its average over the equilibrium distribution function ... [Pg.93]

In this chapter, the voltammetric study of local anesthetics (procaine and related compounds) [14—16], antihistamines (doxylamine and related compounds) [17,22], and uncouplers (2,4-dinitrophenol and related compounds) [18] at nitrobenzene (NB]Uwater (W) and 1,2-dichloroethane (DCE)-water (W) interfaces is discussed. Potential step voltammetry (chronoamperometry) or normal pulse voltammetry (NPV) and potential sweep voltammetry or cyclic voltammetry (CV) have been employed. Theoretical equations of the half-wave potential vs. pH diagram are derived and applied to interpret the midpoint potential or half-wave potential vs. pH plots to evaluate physicochemical properties, including the partition coefficients and dissociation constants of the drugs. Voltammetric study of the kinetics of protonation of base (procaine) in aqueous solution is also discussed. Finally, application to structure-activity relationship and mode of action study will be discussed briefly. [Pg.682]

A relationship correlating the weak acid uncouplers activity with their A %-, pAi°, and has been presented on the basis of protonophoric theory of uncoupling activity, in which the concentration of anionic ionophore (A ) within a biomembrane is supposed to be controlled by the ionic partition of A at the biomembrane solution interface according to Eq. (28) [19]. The biomembrane solution interface could be polarized or electrogenic [37]. Experimental results on the activities of uncouplers on rat liver mitochondria [30] have been explained reasonably [19,24]. [Pg.695]

Fig. 3. Functions in the integrand of the partition function formula Eq. (6). The lower solid curve labeled Pq AU/kT) is the probability distribution of solute-solvent interaction energies sampled from the uncoupled ensemble of solvent configurations. The dashed curve is the product of this distribution with the exponential Boltzmann factor, e AJJ/kT r the upper solid curve. See Eqs. (5) and (6). Fig. 3. Functions in the integrand of the partition function formula Eq. (6). The lower solid curve labeled Pq AU/kT) is the probability distribution of solute-solvent interaction energies sampled from the uncoupled ensemble of solvent configurations. The dashed curve is the product of this distribution with the exponential Boltzmann factor, e AJJ/kT r the upper solid curve. See Eqs. (5) and (6).
The comonomer composition distributions of these two materials are also indicative of the block architecture of the OBC. A comparison of solution solubility characteristics as revealed by TREF is shown in Fig. 25. The physical blend displays a peak at 96 °C with a soluble fraction of 56 wt%, consistent with a physical blend of HDPE and VLDPE. The trace from the diblock OBC reveals a peak at a slightly lower temperature, 93 °C, with no evidence of a shoulder at higher temperature that could be attributed to uncoupled HDPE. In contrast to the blend, the majority of this sample, 84 wt%, elutes at this high temperature, while only 13 wt%... [Pg.99]

Equations 9.2-28 and -29, in general, are coupled through equation 9.2-30, and analytical solutions may not exist (numerical solution may be required). The equations can be uncoupled only if the reaction is first-order or pseudo-first-order with respect to A, and exact analytical solutions are possible for reaction occurring in bulk hquid and liquid fdm together and in the liquid film only. For second-order kinetics with reaction occurring only in the liquid film, an approximate analytical solution is available. We develop these three cases in the rest of this section. [Pg.248]

As mentioned in 8.1, the occupancies (na ) and (n ) are in actuality coupled, but we made a simplifying approximation to uncouple them, by setting to zero the appropriate term in (8.13). Solutions to (8.35) can be calculated numerically, after which the total charge transfer is given by (cf. (4.102))... [Pg.148]

Fractional time stepping is widely used in reacting-flow simulations (Boris and Oran 2000) in order to isolate terms in the transport equations so that they can be treated with the most efficient numerical methods. For non-premixed reactions, the fractional-time-stepping approach will yield acceptable accuracy if A t r . Note that since the exact solution to the mixing step is known (see (6.248)), the stiff ODE solver is only needed for (6.249), which, because it can be solved independently for each notional particle, is uncoupled. This fact can be exploited to treat the chemical source term efficiently using chemical lookup tables. [Pg.329]

As mentioned above, it is common practice to separate a structure into its major components for purposes of simplifying the dynamic analyses. This uncoupled member by member approach approximates the actual dynamic response since dynamic iteration effects between major structural elements are not considered. Resulting calculated dynamic responses, which include deflections and support reactions, may be underestimated or overestimated, depending on the dynamic characteristics of the loading and the structure. This approximation occurs regardless of the solution method used in performing the uncoupled dynamic analyses. [Pg.38]

It is easy to show, analogously to the classical system, the quantum problem also has solutions corresponding to 3N uncoupled harmonic oscillators. The total wave... [Pg.66]


See other pages where Uncoupled solution is mentioned: [Pg.76]    [Pg.369]    [Pg.193]    [Pg.482]    [Pg.76]    [Pg.369]    [Pg.193]    [Pg.482]    [Pg.212]    [Pg.393]    [Pg.136]    [Pg.116]    [Pg.283]    [Pg.216]    [Pg.189]    [Pg.640]    [Pg.381]    [Pg.533]    [Pg.644]    [Pg.682]    [Pg.216]    [Pg.53]    [Pg.46]    [Pg.327]    [Pg.343]    [Pg.579]    [Pg.316]    [Pg.111]    [Pg.308]   
See also in sourсe #XX -- [ Pg.369 ]




SEARCH



Uncoupled

Uncoupler

Uncouplers

Uncoupling

© 2024 chempedia.info