Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Voltammetry potential step

Kakutani et al. described an ion-transfer voltammetry and potentiometry method for the determination of acetylcholine with the interface between polymer-nitrobenzene gel and water [13]. The PVC-nitrobenzene gel electrode was prepared as described by Osakai et al. [14]. The transfer of acetylcholine ions across the interface between the gel electrode and water was studied by cyclic voltammetry, potential-step chronoamperometry, and potentiometry. The interface between the two immiscible electrolyte solutions acted as the ion-selective electrode surface for the determination of acetylcholine ions. [Pg.26]

To evaluate the kinetics of fast reactions, transient techniques are being used, such as voltammetry, potential step amperometry and ac impedance spectroscopy. [Pg.502]

In this chapter the synthetic aspects of the earlier mentioned [M(bipy)2 (PVPjnCl]" polymers (where M = Os,Ru) are discussed. The main part of the chapter is devoted to the effect of electrolyte and polymer loading on the electrochemistry observed at electrodes modified with these materials. Interaction between the polymer layer and the electrolyte is investigated using electrochemical techniques such as cyclic voltammetry, potential step methods, and the electrochemical quartz crystal microbalance. Attention is also paid to mediation reactions using such modified electrodes. Finally, the implications of these observations for analytical applications of these materials are discussed. [Pg.175]

The RDE has the considerable practical advantage over techniques such as cyclic voltammetry, potential step, or a.c. methods. The rate of mass transport to the electrode may be varied over a substantial range and in a controlled way without resort to a rapid change in the electrode potential which inevitably leads to the measured current having a contribution from charging the double layer. Since in most experiments with the RDE only (pseudo) steady state currents are measured, the recorded current may be unequivocably equated with the faradiac current. [Pg.123]

Tafel slopes with those calculated for all feasible mechanisms. Additional information comes from cyclic voltammetry, potential step techniques, and capacitance measurements, while several in situ and ex situ spectroscopic techniques are beginning to give a detailed insight into the electrode-solution interface during electrocatalytic reactions [19] (see also Chapter 10). [Pg.233]

Most electrochemical experiments in the laboratory make use of the principle of non-steady state diffusion. Certainly this is the case for cyclic voltammetry, potential step, a.c. methods, and spectroelectrochemical techniques, and hence we must develop the techniques to solve the partial differential equations which describe non-steady state diffusion. [Pg.394]

Potential of zero charge, 20, 23, 25, 66 Potential scanning detector, 92 Potential step, 7, 42, 60 Potential window, 107, 108 Potentiometry, 2, 140 Potentiometric stripping analysis, 79 Potentiostat, 104, 105 Preconcentrating surfaces, 121 Preconcentration step, 121 Pretreatment, 110, 116 Pulsed amperometric detection, 92 Pulse voltammetry, 67... [Pg.208]

Although the mechanisms discussed above are still topics of debate, it is now firmly established that the electrodeposition of conducting polymers proceeds via some kind of nucleation and phase-growth mechanism, akin to the electrodeposition of metals.56,72-74 Both cyclic voltammetry and potential step techniques have been widely used to investigate these processes, and the electrochemical observations have been supported by various types of spectroscopy62,75-78 and microscopy.78-80... [Pg.557]

Such effects are observed inter alia when a metal is electrochemically deposited on a foreign substrate (e.g. Pb on graphite), a process which requires an additional nucleation overpotential. Thus, in cyclic voltammetry metal is deposited during the reverse scan on an identical metallic surface at thermodynamically favourable potentials, i.e. at positive values relative to the nucleation overpotential. This generates the typical trace-crossing in the current-voltage curve. Hence, Pletcher et al. also view the trace-crossing as proof of the start of the nucleation process of the polymer film, especially as it appears only in experiments with freshly polished electrodes. But this is about as far as we can go with cyclic voltammetry alone. It must be complemented by other techniques the potential step methods and optical spectroscopy have proved suitable. [Pg.14]

In this section, we will present and discuss cyclic voltammetry and potential-step DBMS data on the electro-oxidation ( stripping ) of pre-adsorbed residues formed upon adsorption of formic acid, formaldehyde, and methanol, and compare these data with the oxidative stripping of a CO adlayer formed upon exposure of a Pt/ Vulcan catalyst to a CO-containing (either CO- or CO/Ar-saturated) electrolyte as reference. We will identify adsorbed species from the ratio of the mass spectrometric and faradaic stripping charge, determine the adsorbate coverage relative to a saturated CO adlayer, and discuss mass spectrometric and faradaic current transients after adsorption at 0.16 V and a subsequent potential step to 0.6 V. [Pg.417]

In this chapter, the voltammetric study of local anesthetics (procaine and related compounds) [14—16], antihistamines (doxylamine and related compounds) [17,22], and uncouplers (2,4-dinitrophenol and related compounds) [18] at nitrobenzene (NB]Uwater (W) and 1,2-dichloroethane (DCE)-water (W) interfaces is discussed. Potential step voltammetry (chronoamperometry) or normal pulse voltammetry (NPV) and potential sweep voltammetry or cyclic voltammetry (CV) have been employed. Theoretical equations of the half-wave potential vs. pH diagram are derived and applied to interpret the midpoint potential or half-wave potential vs. pH plots to evaluate physicochemical properties, including the partition coefficients and dissociation constants of the drugs. Voltammetric study of the kinetics of protonation of base (procaine) in aqueous solution is also discussed. Finally, application to structure-activity relationship and mode of action study will be discussed briefly. [Pg.682]

Potential step voltammetry (chronoamperometry) or normal pulse voltammetry (NPV) and potential sweep or cyclic voltammetry (CV) were employed for investigating drugs at the NB/W or DCE/W interface. A thin O-layer cell [15,16,23] was used to realize the partition equilibrium of neutral species (that is, B) at the O/W interface initially at t = 0 within a reasonably short time. All measurements were carried out at 25°C. Experimental details should be consulted in the references cited. [Pg.687]

The initial stages, notably the formation of a monolayer on a foreign substrate at underpotentials, were mainly studied by classical electrochemical techniques, such as cyclic voltammetry [8, 9], potential-step experiments or impedance spectroscopy [10], and by optical spectroscopies, e.g., by differential reflectance [11-13] or electroreflectance [14] spectroscopy, in an attempt to evaluate the optical and electronic properties of thin metal overlayers as function of their thickness. Competently written reviews on the classic approach to metal deposition, which laid the basis of our present understanding and which still is indispensable for a thorough investigation of plating processes, are found in the literature [15-17]. [Pg.108]

Cyclic voltammetry (CV) curves were recorded on a Kipp and Zonen BD91 X-Y recorder and the current-time transients resulting from the potential step experiments were recorded digitally. The apparatus used included a PAR Model 173 potentiostat and an IBM XT computer... [Pg.485]

These expressions are designed for cyclic voltammetry. The expressions appropriate for potential step chronoamperometry or impedance measurements, for example, are obtained by replacing IZT/Fv by the measurement time, tm, and the inverse of the pulsation, 1/co, respectively. Thus, fast and slow become Af and Ah I and -C 1, respectively. The outcome of the kinetic competition between electron transfer and diffusion is treated in detail in Section 1.4.3 for the case of cyclic voltammetry, including its convolutive version and a brief comparison with other electrochemical techniques. [Pg.30]

ESTABLISHING THE MECHANISM AND MEASURING THE RATE CONSTANTS FOR HOMOGENEOUS REACTIONS BY MEANS OF CYCLIC VOLTAMMETRY AND POTENTIAL STEP CHRONOAMPEROMETRY... [Pg.80]

This is a case where another electrochemical technique, double potential step chronoamperometry, is more convenient than cyclic voltammetry in the sense that conditions may be defined in which the anodic response is only a function of the rate of the follow-up reaction, with no interference from the electron transfer step. The procedure to be followed is summarized in Figure 2.7. The inversion potential is chosen (Figure 2.7a) well beyond the cyclic voltammetric reduction peak so as to ensure that the condition (Ca) c=0 = 0 is fulfilled whatever the slowness of the electron transfer step. Similarly, the final potential (which is the same as the initial potential) is selected so as to ensure that Cb)x=0 = 0 at the end of the second potential step whatever the rate of electron transfer. The chronoamperometric response is recorded (Figure 2.7b). Figure 2.7c shows the variation of the ratio of the anodic-to-cathodic current for 2tR and tR, recast as Rdps, with the dimensionless parameter, 2, measuring the competition between diffusion and follow-up reaction (see Section 6.2.3) ... [Pg.91]


See other pages where Voltammetry potential step is mentioned: [Pg.297]    [Pg.297]    [Pg.297]    [Pg.578]    [Pg.37]    [Pg.470]    [Pg.122]    [Pg.18]    [Pg.297]    [Pg.297]    [Pg.297]    [Pg.578]    [Pg.37]    [Pg.470]    [Pg.122]    [Pg.18]    [Pg.1930]    [Pg.74]    [Pg.393]    [Pg.557]    [Pg.161]    [Pg.164]    [Pg.124]    [Pg.161]    [Pg.132]    [Pg.742]    [Pg.17]    [Pg.19]    [Pg.485]    [Pg.20]    [Pg.24]    [Pg.26]    [Pg.62]    [Pg.79]    [Pg.150]    [Pg.174]    [Pg.284]    [Pg.285]    [Pg.474]   
See also in sourсe #XX -- [ Pg.683 ]




SEARCH



Potential step

© 2024 chempedia.info