Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liouville matrix

For a coupled spin system, the matrix of the Liouvillian must be calculated in the basis set for the spin system. Usually this is a simple product basis, often called product operators, since the vectors in Liouville space are spm operators. The matrix elements can be calculated in various ways. The Liouvillian is the conmuitator with the Hamiltonian, so matrix elements can be calculated from the commutation rules of spin operators. Alternatively, the angular momentum properties of Liouville space can be used. In either case, the chemical shift temis are easily calculated, but the coupling temis (since they are products of operators) are more complex. In section B2.4.2.7. the Liouville matrix for the single-quantum transitions for an AB spin system is presented. [Pg.2099]

As with the uncoupled case, one solution involves diagonalizing the Liouville matrix, iL+R+K. If U is the matrix with the eigenvectors as cohmms, and A is the diagonal matrix with the eigenvalues down the diagonal, then (B2.4.32) can be written as (B2.4.33). This is similar to other eigenvalue problems in quantum mechanics, such as the transfonnation to nonnal co-ordinates in vibrational spectroscopy. [Pg.2100]

Note that the Liouville matrix, iL+R+K may not be Hennitian, but it can still be diagonalized. Its eigenvalues and eigenvectors are not necessarily real, however, and the inverse of U may not be its complex-conjugate transpose. If complex numbers are allowed in it, equation (B2.4.33) is a general result. Since A is a diagonal matrix it can be expanded in tenns of the individual eigenvalues, X. . The inverse matrix can be applied... [Pg.2100]

For example, the observed transitions of an AB spin system have a Liouville matrix given m equation (B2.4.35). The coupling constant is J, and it is assumed that ciig = = -5/2, so that 5 is the frequency... [Pg.2101]

In tlie case of mutual AB exchange this matrix can be simplified. The equilibrium constant must be 1, so /r k . Also, is equal to Mg and vice versa, and the couplmg constant is the same. For instance, if L is the Liouville matrix for one site, then the Liouville matrix for the other site is P LP, where P is the matrix describing the pemuitation. [Pg.2102]

LvN equation combined with BD simulations have also been reported for spin systems with S>l/2 with substantially larger dimensions of the Liouville matrixes. Examples include systems with electron spins up to S = 7l2 and copper(ii) porphyrin with hyperfine coupling to four atoms. ... [Pg.44]

Figure Al.6.18. Liouville space lattice representation in one-to-one correspondence with the diagrams in figure A1.6.17. Interactions of the density matrix with the field from the left (right) is signified by a vertical (liorizontal) step. The advantage to the Liouville lattice representation is that populations are clearly identified as diagonal lattice points, while coherences are off-diagonal points. This allows innnediate identification of the processes subject to population decay processes (adapted from [37]). Figure Al.6.18. Liouville space lattice representation in one-to-one correspondence with the diagrams in figure A1.6.17. Interactions of the density matrix with the field from the left (right) is signified by a vertical (liorizontal) step. The advantage to the Liouville lattice representation is that populations are clearly identified as diagonal lattice points, while coherences are off-diagonal points. This allows innnediate identification of the processes subject to population decay processes (adapted from [37]).
Altematively, in the case of incoherent (e.g. statistical) initial conditions, the density matrix operator P(t) I 1>(0) (v(01 at time t can be obtained as the solution of the Liouville-von Neumann equation ... [Pg.1057]

It is more convenient to re-express this equation in Liouville space [8, 9 and 10], in which the density matrix becomes a vector, and the commutator with the Hamiltonian becomes the Liouville superoperator. In tliis fomuilation, the lines in the spectrum are some of the elements of the density matrix vector, and what happens to them is described by the superoperator matrix, equation (B2.4.25) becomes (B2.4.26). [Pg.2099]

This Liouville-space equation of motion is exactly the time-domain Bloch equations approach used in equation (B2.4.13). The magnetizations are arrayed in a vector, and anything that happens to them is represented by a matrix. In frequency units (1i/2ti = 1), the fomial solution to equation (B2.4.26) is given by equation (B2.4.27) (compare equation (B2.4.14H. [Pg.2099]

Relaxation or chemical exchange can be easily added in Liouville space, by including a Redfield matrix, R, for relaxation, or a kinetic matrix, K, to describe exchange. The equation of motion for a general spin system becomes equation (B2.4.28). [Pg.2099]

In Liouville space, both the density matrix and the operator are vectors. The dot product of these Liouville space... [Pg.2100]

The Bloch equation approach (equation (B2.4.6)) calculates the spectrum directly, as the portion of the spectrum that is linear in a observing field. Binsch generalized this for a frilly coupled system, using an exact density-matrix approach in Liouville space. His expression for the spectrum is given by equation (B2.4.42). Note that this is fomially the Fourier transfomi of equation (B2.4.32). so the time domain and frequency domain are coimected as usual. [Pg.2104]

In the DC-biased structures considered here, the dynamics are dominated by electronic states in the conduction band [1]. A simplified version of the theory assumes that the excitation occurs only at zone center. This reduces the problem to an n-level system (where n is approximately equal to the number of wells in the structure), which can be solved using conventional first-order perturbation theory and wave-packet methods. A more advanced version of the theory includes all of the hole states and electron states subsumed by the bandwidth of the excitation laser, as well as the perpendicular k states. In this case, a density-matrix picture must be used, which requires a solution of the time-dependent Liouville equation. Substituting the Hamiltonian into the Liouville equation leads to a modified version of the optical Bloch equations [13,15]. These equations can be solved readily, if the k states are not coupled (i.e., in the absence of Coulomb interactions). [Pg.251]

A formulation of electronic rearrangement in quantum molecular dynamics has been based on the Liouville-von Neumann equation for the density matrix. Introducing an eikonal representation, it naturally leads to a general treatment where Hamiltonian equations for nuclear motions are coupled to the electronic density matrix equations, in a formally exact theory. Expectation values of molecular operators can be obtained from integrations over initial conditions. [Pg.335]

Our analysis is based on solution of the quantum Liouville equation in occupation space. We use a combination of time-dependent and time-independent analytical approaches to gain qualitative insight into the effect of a dissipative environment on the information content of 8(E), complemented by numerical solution to go beyond the range of validity of the analytical theory. Most of the results of Section VC1 are based on a perturbative analytical approach formulated in the energy domain. Section VC2 utilizes a combination of analytical perturbative and numerical nonperturbative time-domain methods, based on propagation of the system density matrix. Details of our formalism are provided in Refs. 47 and 48 and are not reproduced here. [Pg.178]

To calculate x( ) we have to calculate the polarizability P(t), which is related to the reduced density matrix p(f). [Here, for convenience, p is used instead of cr(f).] The reduced density matrix satisfies the Liouville equation ... [Pg.62]

The dynamical behaviors of p(At) v and p(At)av av, have to be determined by solving the stochastic Liouville equation for the reduced density matrix the initial conditions are determined by the pumping process. For the purpose of qualitative discussion, we assume that the 80-fs pulse can only pump two vibrational states, say v = 0 and v = 1 states. In this case we obtain... [Pg.66]

Chaos provides an excellent illustration of this dichotomy of worldviews (A. Peres, 1993). Without question, chaos exists, can be experimentally probed, and is well-described by classical mechanics. But the classical picture does not simply translate to the quantum view attempts to find chaos in the Schrodinger equation for the wave function, or, more generally, the quantum Liouville equation for the density matrix, have all failed. This failure is due not only to the linearity of the equations, but also the Hilbert space structure of quantum mechanics which, via the uncertainty principle, forbids the formation of fine-scale structure in phase space, and thus precludes chaos in the sense of classical trajectories. Consequently, some people have even wondered if quantum mechanics fundamentally cannot describe the (macroscopic) real world. [Pg.53]

By analogy the propagation of a density matrix, which corresponds to the solution of the Liouville-von Neumann equation 231... [Pg.325]

In the previous sections we have considered the transformation of observables. In this section we consider the transformation of the density matrix. The transformed Liouville equation for p(t) = Ap(t) is... [Pg.143]

In Liouville space, both the density matrix and the 4 operator become vectors. The scalar product of these Liouville space vectors is the trace of their product as operators. Therefore, the NMR signal, as a function of a single time variable, t, is given by (10), in which the parentheses denote a Liouville space scalar product ... [Pg.239]

Another important hierarchy of equations is obtained by applying the (MCM) to the matrix representation of the Liouville-von Neumann Equation LVNE) [12,13]. In this way the p-order Contracted Liouville-von Neumann Elquation (p-CLVNE) is obtained [4]. It will be shown here that The structure of a particular p-CSE, that involves the higher order CSE s for a given state, can be replaced by an equivalent set of equations, 1-CSE and 1-CLVNE, but for the whole spectrum, i. e. involving all the states. [Pg.38]


See other pages where Liouville matrix is mentioned: [Pg.2101]    [Pg.2101]    [Pg.2101]    [Pg.2101]    [Pg.36]    [Pg.36]    [Pg.2101]    [Pg.2101]    [Pg.2101]    [Pg.2101]    [Pg.36]    [Pg.36]    [Pg.255]    [Pg.708]    [Pg.1502]    [Pg.128]    [Pg.178]    [Pg.206]    [Pg.325]    [Pg.54]    [Pg.79]    [Pg.525]    [Pg.6]    [Pg.236]   
See also in sourсe #XX -- [ Pg.239 ]




SEARCH



© 2024 chempedia.info