Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ultrafiltration membranes improvements

Electroultrafiltration (EUF) combines forced-flow electrophoresis (see Electroseparations,electrophoresis) with ultrafiltration to control or eliminate the gel-polarization layer (45—47). Suspended colloidal particles have electrophoretic mobilities measured by a zeta potential (see Colloids Elotation). Most naturally occurring suspensoids (eg, clay, PVC latex, and biological systems), emulsions, and protein solutes are negatively charged. Placing an electric field across an ultrafiltration membrane faciUtates transport of retained species away from the membrane surface. Thus, the retention of partially rejected solutes can be dramatically improved (see Electrodialysis). [Pg.299]

S-layer ultrafiltration membranes (SUMs) are isoporous structures with very sharp molecular exclusion limits (see Section III.B). SUMs were manufactured by depositing S-layer-carrying cell wall fragments of B. sphaericus CCM 2120 on commercial microfiltration membranes with a pore size up to 1 pm in a pressure-dependent process [73]. Mechanical and chemical resistance of these composite structures could be improved by introducing inter- and intramolecular covalent linkages between the individual S-layer subunits. The uni-... [Pg.373]

Cell-free translation system, used for the identification of cloned genes and gene expression, has been investigated extensively as a preparative production system of commercially interesting proteins after the development of continuous-flow cell-free translation system. Many efforts have been devoted to improve the productivity of cell-free system [1], but the relatively low productivity of cell-free translation system still limits its potential as an alternative to the protein production using recombinant cells. One approach to enhance the translational efficiency is to use a condensed cell-free translation extract. However, simple addition of a condensed extract to a continuous-flow cell-free system equipped with an ultrafiltration membrane can cause fouling. Therefore, it needs to be developed a selective condensation of cell-free extract for the improvement of translational efficiency without fouling problem. [Pg.169]

Aim of this work was to optimise enzymatic depolymerization of pectins to valuable oligomers using commercial mixtures of pectolytic enzymes. Results of experiments in continuous and batch reactor configurations are presented which give some preliminary indications helpful to process optimisation. The use of continuous reactors equipped with ultrafiltration membranes, which assure removal of the reaction products, allows to identify possible operation policy for the improvement of the reaction yield. [Pg.441]

In the synthesis of A-acetyllactosamin from lactose and A-acetylglucosamine with (3-galactosidase (289,290), the addition of 25 vol% of the water-miscible ionic liquid [MMIM][MeS04] to an aqueous system was found to effectively suppress the side reaction of secondary hydrolysis of the desired product. As a result, the product yield was increased from 30 to 60%. Product separation was improved, and the reuse of the enzymatic catalyst became possible. A kinetics investigation showed that the enzyme activity was not influenced by the presence of the ionic liquids. The enzyme was stable under the conditions employed, allowing its repeated use after filtration with a commercially available ultrafiltration membrane. [Pg.228]

Cabral and coworkers [253] have investigated the batch mode synthesis of a dipeptide acetyl phenylalanine leucinamide (AcPhe-Leu-NH2) catalyzed by a-chymotrypsin in a ceramic ultrafiltration membrane reactor using a TTAB/oc-tanol/heptane reverse micellar system. Separation of the dipeptide was achieved by selective precipitation. Later on the same group successfully synthesized the same dipeptide in the same reactor system in a continuous mode [254] with high yields (70-80%) and recovery (75-90%). The volumetric production was as high as 4.3 mmol peptide/l/day with a purity of 92%. The reactor was operated for seven days continuously without any loss of enzyme activity. Hakoda et al. [255] proposed an electro-ultrafiltration bioreactor for separation of RMs containing enzyme from the product stream. A ceramic membrane module was used to separate AOT-RMs containing lipase from isooctane. Application of an electric field enhanced the ultrafiltration efficiency (flux) and it further improved when the anode and cathode were placed in the permeate and the reten-tate side respectively. [Pg.165]

Jeon, Y. J., Byun, H. G., and Kim, S. K. (1999). Improvement of functional properties of cod frame protein hydrolysates using ultrafiltration membranes. Process Biochem. 35,471-478. [Pg.69]

The production by Loeb and Sourirajan of the first successful anisotropic membranes spawned numerous other techniques in which a microporous membrane is used as a support for a thin, dense separating layer. One of the most important of these was interfacial polymerization, an entirely new method of making anisotropic membranes developed by John Cadotte, then at North Star Research. Reverse osmosis membranes produced by this technique had dramatically improved salt rejections and water fluxes compared to those prepared by the Loeb-Souri-rajan process. Almost all reverse osmosis membranes are now made by the interfacial polymerization process, illustrated in Figure 3.20. In this method, an aqueous solution of a reactive prepolymer, such as a polyamine, is first deposited in the pores of a microporous support membrane, typically a polysul-fone ultrafiltration membrane. The amine-loaded support is then immersed in a water-immiscible solvent solution containing a reactant, such as a diacid chloride in hexane. The amine and acid chloride react at the interface of the two immiscible... [Pg.116]

Wang, Y.Q. et al. (2005) Remarkable reduction of irreversible fouling and improvement of the permeation properties of poly(ether sulfone) ultrafiltration membranes by blending with pluronic F127. Langmuir, 21, 11856-11862. [Pg.243]

This chapter will focus on three types of membrane extracorporeal devices, hemodialyzers, plasma filters for fractionating blood components, and artificial liver systems. These applications share the same physical principles of mass transfer by diffusion and convection across a microfiltration or ultrafiltration membrane (Figure 18.1). A considerable amount of research and development has been undertaken by membrane and modules manufacturers for producing more biocompatible and permeable membranes, while improving modules performance by optimizing their internal fluid mechanics and their geometry. [Pg.411]

Several researchers have investigated the possibilities of membranes for the removal of dispersed water-based ink pigments from wash effluent [121-126]. Generally, membranes, in particular ultrafiltration membranes, have been found to completely remove ink pigments from effluent streams. It has also been observed that the permeate flux and the fouling tendency depend on operational conditions and effluent composition. For instance, coagulation pretreatment [125], feed water acidification [121], and surfactant addition [123] have been found to improve the flux and decrease fouhng. [Pg.999]

The use of gas-diffusion membranes instead of ultrafiltration membranes can also improve the precision as the former are not easily bent this avoids changes in permeate flux resulting from both irreproducible membrane areas and increased volumes of the upper chamber [153,171]. [Pg.143]

A membrane cell recycle reactor with continuous ethanol extraction by dibutyl phthalate increased the productivity fourfold with increased conversion of glucose from 45 to 91%.249 The ethanol was then removed from the dibutyl phthalate with water. It would be better to do this second step with a membrane. In another process, microencapsulated yeast converted glucose to ethanol, which was removed by an oleic acid phase containing a lipase that formed ethyl oleate.250 This could be used as biodiesel fuel. Continuous ultrafiltration has been used to separate the propionic acid produced from glycerol by a Propionibacterium.251 Whey proteins have been hydrolyzed enzymatically and continuously in an ultrafiltration reactor, with improved yields, productivity, and elimination of peptide coproducts.252 Continuous hydrolysis of a starch slurry has been carried out with a-amylase immobilized in a hollow fiber reactor.253 Oils have been hydrolyzed by a lipase immobilized on an aromatic polyamide ultrafiltration membrane with continuous separation of one product through the membrane to shift the equilibrium toward the desired products.254 Such a process could supplant the current energy-intensive industrial one that takes 3-24 h at 150-260X. Lipases have also been used to prepare esters. A lipase-surfactant complex in hexane was used to prepare a wax ester found in whale oil, by the esterification of 1 hexadecanol with palmitic acid in a membrane reactor.255 After 1 h, the yield was 96%. The current industrial process runs at 250°C for up to 20 h. [Pg.192]

Polysulfone was recognized as a major improvement in the state-of-the-art of composite membranes at that time. But the broad scope of its usefulness was never fully appreciated until later. It has since become widely useful in its own right as an ultrafiltration membrane. It was subsequently included in a U.S. patent on ultrafiltration membranes by Michaels that issued in 1971.21 Concerning reverse osmosis membranes, it represented a key development that later enabled rapid progress to take place In noncellulosic composite membranes. [Pg.312]

Performance improvement of polysulfone ultrafiltration membrane has been achieved by blending with PANI-NFs [457]. Conducting blends of nanostruetured PANI and PANI-clay nanocomposites with ethylene vinyl acetate as host matrix have been prepared [458]. A new conducting hybrid biocompatible composite material of PANI-NFs well dispersed in a collagen matrix was fabricated with various PANI-NFs/eoUagen ratios [459]. PANI-NFs doped by protonic acids can be efficiently dispersed in vinylidene fluoride-trifluoroethylene copolymers [460]. Fabrication of MWCNTs/PANI-NF nanocomposites via electrostatic adsorption in aqueous colloids has been reported [143]. A PANI-NFs/ carbon paste electrode was prepared via dopping PANI-NFs into the carbon paste [461]. [Pg.65]


See other pages where Ultrafiltration membranes improvements is mentioned: [Pg.239]    [Pg.116]    [Pg.71]    [Pg.12]    [Pg.90]    [Pg.239]    [Pg.151]    [Pg.7]    [Pg.198]    [Pg.164]    [Pg.227]    [Pg.327]    [Pg.337]    [Pg.510]    [Pg.856]    [Pg.12]    [Pg.236]    [Pg.590]    [Pg.608]    [Pg.632]    [Pg.94]    [Pg.190]    [Pg.210]    [Pg.61]    [Pg.46]    [Pg.465]    [Pg.189]    [Pg.504]    [Pg.317]    [Pg.68]    [Pg.72]   
See also in sourсe #XX -- [ Pg.314 ]




SEARCH



Membranes improvement

Ultrafiltrate

© 2024 chempedia.info