Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tyramine metabolized

MAO-A (isoform A) is the amine oxidase primarily responsible for norepinephrine, serotonin, and tyramine metabolism. MAO-B is more selective for dopamine. The irreversible inhibitors available in the USA are nonselective and block both forms of the enzyme. Irreversible block of MAO, characteristic of the older MAO inhibitors, allows significant accumulation of tyramine and loss of the first-pass metabolism that protects against tyramine in foods. As a result, the irreversible MAO inhibitors are subject to a very high risk of hypertensive reactions to tyramine ingested in food. [Pg.681]

Isoniazid inhibits monoamine oxidase, and hence reduces tyramine metabolism this effect is enhanced by co-administration of other monoamine oxidase inhibitors... [Pg.83]

Adverse reactions during treatment with isoniazid have been noted after ingestion of several kinds of cheese (60,61). Flushing, palpitation, tachycardia, and increased blood pressure have been observed 0.5-2 hours after cheese. The symptoms generally disappear within 2-4 hours. Interference by isoniazid with monoamine oxidase, and hence with tyramine metabolism, has been incriminated. [Pg.1928]

Chronic use of these irreversible MAO inhibitors has been associated with life-threatening toxicity, ie, hepatotoxicity and hypertensive crisis. Interactions with tyramine contained in food and other drugs have severely limited use of irreversible MAO inhibitors. These MAO inhibitors are also nonselective, inhibiting both MAO-A and MAO-B isoenzymes. Furthermore, they interfere with the hepatic metabolism of many dmgs. [Pg.231]

Trace Amines. Figure 1 The main routes of trace amine metabolism. The trace amines (3-phenylethylamine (PEA), p-tyramine (TYR), octopamine (OCT) and tryptamine (TRP), highlighted by white shading, are each generated from their respective precursor amino acids by decarboxylation. They are rapidly metabolized by monoamine oxidase (MAO) to the pharmacologically inactive carboxylic acids. To a limited extent trace amines are also A/-methylated to the corresponding secondary amines which are believed to be pharmacologically active. Abbreviations AADC, aromatic amino acid decarboxylase DBH, dopamine b-hydroxylase NMT, nonspecific A/-methyltransferase PNMT, phenylethanolamine A/-methyltransferase TH, tyrosine hydroxylase. [Pg.1219]

Pyridoxamine phosphate serves as a coenzyme of transaminases, e.g., lysyl oxidase (collagen biosynthesis), serine hydroxymethyl transferase (Cl-metabolism), S-aminolevulinate synthase (porphyrin biosynthesis), glycogen phosphoiylase (mobilization of glycogen), aspartate aminotransferase (transamination), alanine aminotransferase (transamination), kynureninase (biosynthesis of niacin), glutamate decarboxylase (biosynthesis of GABA), tyrosine decarboxylase (biosynthesis of tyramine), serine dehydratase ((3-elimination), cystathionine 3-synthase (metabolism of methionine), and cystathionine y-lyase (y-elimination). [Pg.1290]

Benedetti, M, Boucher, T, Carlsson, A and Fowler, CJ (1983) Intestinal metabolism of tyramine by both forms of monoamine oxidase in the rat. Biochem. Pharmacol. 32 47-52. [Pg.450]

In the vertebrate CNS monoamines have been associated with a number of physiological functions (reviewed in Kandel et al., 1991). Serotonin has functions associated with mood, pain, sleep, learning, and memory. Dopamine has functions associated with schizophrenia, Parkinson s disease, and cocaine addiction. In vertebrates, dopamine is further metabolized into two additional neurotransmitters, norepinephrine and epinephrine. Norepinephrine increases the excitability of cells in response to sudden sensory input such as fear. Epinephrine has been identified in specific neurons of the brain, but the function of these cells is unknown. In addition, AADC has also been found in a class of neurons that do not have any of the four neurotransmitters discussed above (Jaeger et al., 1983). These neurons may use one of the trace amines, tyramine, tryptamine, or phenylethylamine, as a neurotransmitter. [Pg.60]

MAOI (Monoamine Oxidase Inhibitors) will intensify and prolong the effects of NN-DMT, however this is never recommended. Foolish combinations of MAOIs and other drugs can lead to serious health problems and even death. The tryptamines are normally metabolized by an MAO in the body. MAO metabolizes serotonin, norepinephrine, and dopamine. By inhibiting this, MAOIs increase levels of those neurotransmitters. Tyramine will not be metabolized and will cause an increase in tyramine levels in blood. [Pg.5]

Tyramine is an amino acid which is present in large quantities in protein rich, fermented and stored products like some cheeses, sausages, red wines, beers etcetera. Tyramine is metabolized into nor-adrenaline by the enzyme mono-amino-oxidase (MAO). If MAO is inhibited by drags nor-adrenaline is accumulated and can give hypertensive crises. [Pg.107]

Hauptmann N, Grimsby J, Shih JC, Cadenas E. 1996. The metabolism of tyramine by monoamine oxidase A/B causes oxidative damage to mitochondrial DNA. Arch Biochem... [Pg.84]

One of the substances metabolized by the MAO enzymes is tyramine, which is a naturally occurring component of many foods. Thus, patients taking MAOis must... [Pg.50]

The main limitation to the clinical use of the MAOIs is due to their interaction with amine-containing foods such as cheeses, red wine, beers (including non-alcoholic beers), fermented and processed meat products, yeast products, soya and some vegetables. Some proprietary medicines such as cold cures contain phenylpropanolamine, ephedrine, etc. and will also interact with MAOIs. Such an interaction (termed the "cheese effect"), is attributed to the dramatic rise in blood pressure due to the sudden release of noradrenaline from peripheral sympathetic terminals, an event due to the displacement of noradrenaline from its mtraneuronal vesicles by the primary amine (usually tyramine). Under normal circumstances, any dietary amines would be metabolized by MAO in the wall of the gastrointestinal tract, in the liver, platelets, etc. The occurrence of hypertensive crises, and occasionally strokes, therefore limited the use of the MAOIs, despite their proven clinical efficacy, to the treatment of atypical depression and occasionally panic disorder. [Pg.170]

Using pig and human microsomes and cDNA-expressed human flavin-containing monooxygenase, Lin and Cashman demonstrated a metabolic detoxification pathway that converts tyramine into the HA derivative, 20, and the anti oxime, 21, which was sufficiently stable to permit its chemical characterization". ... [Pg.630]

Monoamine oxidase inhibitors. The monoamine oxidase inhibitors (MAOIs) inhibit the intracellular catabolic enzyme monoamine oxidase. There are two types of monoamine oxidase MAO-A and MAO-B, both of which metabolize tyramine and dopamine. In addition, MAO-A preferentially metabolizes norepinephrine, epinephrine, and serotonin, and MAO-B preferentially metabolizes phenylethylamine (an endogenous amphetamine-like substance) and N-methylhistamine (Ernst, 1996). Some MAOIs are selective for A or B and some are nonselective (mixed). In addition, irreversible MAOIs (e.g., phenelzine, tranylcypromine) are more susceptible to the cheese effect than are the reversible agents (e.g., moclobemide). [Pg.454]

Monoamine oxidase A (MAO A) acts selectively on the substrates norepinephrine and serotonin, whereas monoamine oxidase B (MAO B) preferentially affects phenylethylamine. Both MAO A and MAO B oxidize dopamine and tyramine. MAO A inhibition appears to be most relevant to the antidepressant effects of these drugs. Drugs that inhibit both MAO A and MAO B are called non-selective. The MAOI antidepressants currently available in the United States are nonselective inhibitors. Because tyramine can be metabolized by either MAO A or MAO B, drugs that selectively inhibit one of these enzymes but not the other do not require dietary... [Pg.46]

It inactivates many of the neurotransmitters in the synaptic gap or in the synapse if the latter are not protected by synaptic vesicles. The metabolism of NE, DA, 5-HT, tyramine, and histamine is thus taken care of by MAO as well as by some other enzymes. [Pg.498]

One pharmacological theory of the mechanism underlying postural hypotension is the false-transmitter theory. Tyramine may be metabolized to an inactive metabolite (octopamine) that partially fills the NE storage vesicles with a false (inactive) transmitter, but definitive proof is lacking. [Pg.152]

Tyramine acts as an indirect sympathomimetic to cause release of catecholamines from nerve terminals. It is present in a number of foods mature cheese, yeast extracts, some red wines, hung game, pickled herrings, broad bean pods. Normally, MAO-A in the intestinal mucosa will metabolise tyramine absorbed from the gut. In patients on the older MAOls, considerable amounts of tyramine will enter the circulation and this will lead to increased release of catecholamines stored in nerve terminals because the MAOI prevents their metabolism. For patients on RIMA drugs, high concentrations of tyramine can compete for MAO-A, thus mitigating some of the effects, and MAO-B is still available to metabolise noradrenaline (norepinephrine). MAO-B, however, has relatively much less effect on 5-HT and thus 5-HT function is still enhanced. [Pg.177]

MAOIs act by mitigating the actions of monoamine oxidase in the neuron and increasing monoamine content. There are two forms of monoamine oxidase. MAO-A is present in both dopamine and norepinephrine neurons and is found primarily in the brain, gut, placenta, and liver its primary substrates are norepinephrine, epinephrine, and serotonin. MAO-B is found primarily in serotonergic and histaminergic neurons and is distributed in the brain, liver, and platelets. MAO-B acts primarily on tyramine, phenylethylamine, and benzylamine. Both MAO-A and -B metabolize tryptamine and dopamine. [Pg.662]


See other pages where Tyramine metabolized is mentioned: [Pg.13]    [Pg.13]    [Pg.783]    [Pg.787]    [Pg.787]    [Pg.788]    [Pg.789]    [Pg.842]    [Pg.176]    [Pg.480]    [Pg.31]    [Pg.449]    [Pg.70]    [Pg.74]    [Pg.202]    [Pg.148]    [Pg.245]    [Pg.85]    [Pg.195]    [Pg.354]    [Pg.354]    [Pg.361]    [Pg.680]    [Pg.442]    [Pg.392]    [Pg.665]    [Pg.53]    [Pg.188]    [Pg.667]   
See also in sourсe #XX -- [ Pg.1397 ]




SEARCH



© 2024 chempedia.info