Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Substrates primary

The primary substrates or support iaclude many types of paper and paperboard, polymer films such as polyethylene terephthalate, metal foils, woven and nonwoven fabrics, fibers, and metal cods. Although the coating process is better suited to continuous webs than to short iadividual sheets, it does work very well for intermittent coating, such as ia the printing process. In general, there is an ideal coater arrangement for any given product. [Pg.303]

In Fig. 1 is shown a HRTEM image of part of the end of a PCNT. The initial material consisted of carbon nanotubes upon which bi-conical spindle-like secondary growth had deposited[21], apparently by inhomogeneous deposition of aromatic carbonaceous, presumably disordered, layers on the primary substrate nanotube. Prior to further heat treatment, the second-... [Pg.106]

Steric hindrance raises the energy of the Sjv-2 transition state, increasing AG- and decreasing the reaction rate (Figure 11.7a). As a result, SN2 reactions are best for methyl and primary substrates. Secondary substrates react slowly, and tertiary substrates do not react by an S -2 mechanism. [Pg.371]

For some tertiary substrates, the rate of SnI reactions is greatly increased by the relief of B strain in the formation of the carbocation (see p. 366). Except where B strain is involved, P branching has little effect on the SnI mechanism, except that carbocations with P branching undergo rearrangements readily. Of course, isobutyl and neopentyl are primary substrates, and for this reason they react very slowly by the SnI mechanism, but not more slowly than the corresponding ethyl or propyl compounds. [Pg.433]

Substitution of the free epoxide, which generally occurs under basic or neutral conditions, usually involves an Sn2 mechanism. Since primary substrates undergo Sn2 attack more readily than secondary, unsymmetrical epoxides are attacked in neutral or basic solution at the less highly substituted carbon, and stereospecifically, with inversion at that carbon. Under acidic conditions, it is the protonated epoxide that undergoes the reaction. Under these conditions the mechanism can be either SnI or Sn2. In S l mechanisms, which favor tertiary carbons, we might expect that attack would be at the more highly substituted carbon, and this is indeed the case. However, even when protonated epoxides react by the 8 2 mechanism, attack is... [Pg.461]

Effect of Solvent on Elimination versus Substitution. Increasing polarity of solvent favors Sn2 reactions at the expense of E2. In the classical example, alcoholic KOH is used to effect elimination, while the more polar aqueous KOH is used for substitution. Charge-dispersal discussions, similar to those on page 450, only partially explain this. In most solvents, SnI reactions are favored over El. The El reactions compete best in polar solvents that are poor nucleophiles, especially dipolar aprotic solvents" A study made in the gas phase, where there is no solvent, has shown that when 1-bromopropane reacts with MeO only elimination takes place no substitution even with this primary substrate." ... [Pg.1322]

Now that we have seen all four factors individually, we need to see how to put them all together. When analyzing a reaction, we need to look at all four factors and make a determination of which mechanism, SnI or Sn2, is predominating. It may not be just one mechanism in every case. Sometimes both mechanisms occur and it is difficult to predict which one predominates. Nevertheless, it is a lot more common to see situations that are obviously leaning toward one mechanism over the other. For example, it is clear that a reaction will be Sn2 if we have a primary substrate with a strong nucleophile in a polar aprotic solvent. On the flipside, a reaction will clearly be SnI if we have a tertiary substrate with a weak nucleophile and an excellent leaving group. [Pg.223]

Now let s consider the effect of the substrate on the rate of an E2 process. Recall from the previous chapter that Sn2 reactions generally do not occur with tertiary substrates, because of steric considerations. But E2 reactions are different than Sn2 reactions, and in fact, tertiary substrates often undergo E2 reactions quite rapidly. To explain why tertiary substrates will undergo E2 but not Sn2 reactions, we must recognize that the key difference between substitution and elimination is the role played by the reagent. In a substitution reaction, the reagent functions as a nucleophile and attacks an electrophilic position. In an elimination reaction, the reagent functions as a base and removes a proton, which is easily achieved even with a tertiary substrate. In fact, tertiary substrates react even more rapidly than primary substrates. [Pg.227]

When the reageht fuhotiohs exclusively as a nucleophile (ahd hot as a base), ohiy substitutioh reactions occur (not elimination). The substrate determines which mechahism operates. 3 2 predominates for primary substrates, and 3 1 predominates for tertiary substrates. For secondary substrates, both 3 2 ahd 3 1 cah occur, although 3 2 is generally favored (especially when a polar aprotic solvent is used). [Pg.239]

For primary substrates, Sn2 predominates over E2, unless f-BuOK is used as the reagent, in which case E2 predominates. [Pg.239]

Fatty acids are synthesized by an extramitochondrial system, which is responsible for the complete synthesis of palmitate from acetyl-CoA in the cytosol. In the rat, the pathway is well represented in adipose tissue and liver, whereas in humans adipose tissue may not be an important site, and liver has only low activity. In birds, lipogenesis is confined to the liver, where it is particularly important in providing lipids for egg formation. In most mammals, glucose is the primary substrate for lipogenesis, but in ruminants it is acetate, the main fuel molecule produced by the diet. Critical diseases of the pathway have not been reported in humans. However, inhibition of lipogenesis occurs in type 1 (insulin-de-pendent) diabetes mellitus, and variations in its activity may affect the nature and extent of obesity. [Pg.173]

The pathway for synthesis of the catecholamines dopamine, noradrenaline and adrenaline, illustrated in Fig. 8.5, was first proposed by Hermann Blaschko in 1939 but was not confirmed until 30 years later. The amino acid /-tyrosine is the primary substrate for this pathway and its hydroxylation, by tyrosine hydroxylase (TH), to /-dihydroxyphenylalanine (/-DOPA) is followed by decarboxylation to form dopamine. These two steps take place in the cytoplasm of catecholaminereleasing neurons. Dopamine is then transported into the storage vesicles where the vesicle-bound enzyme, dopamine-p-hydroxylase (DpH), converts it to noradrenaline (see also Fig. 8.4). It is possible that /-phenylalanine can act as an alternative substrate for the pathway, being converted first to m-tyrosine and then to /-DOPA. TH can bring about both these reactions but the extent to which this happens in vivo is uncertain. In all catecholamine-releasing neurons, transmitter synthesis in the terminals greatly exceeds that in the cell bodies or axons and so it can be inferred... [Pg.167]

Figure 9.4 The synthesis and metabolism of 5-HT. The primary substrate for the pathway is the essential amino acid, tryptophan and its hydroxylation to 5-hydrox5dryptophan is the rate-limiting step in the synthesis of 5-HT. The cytoplasmic enzyme, monoamine oxidase (MAOa), is ultimately responsible for the catabolism of 5-HT to 5-hydroxyindoleacetic acid... Figure 9.4 The synthesis and metabolism of 5-HT. The primary substrate for the pathway is the essential amino acid, tryptophan and its hydroxylation to 5-hydrox5dryptophan is the rate-limiting step in the synthesis of 5-HT. The cytoplasmic enzyme, monoamine oxidase (MAOa), is ultimately responsible for the catabolism of 5-HT to 5-hydroxyindoleacetic acid...
BVMO Acronym Primary substrate Origin Year of cloning... [Pg.111]

Hopkins GD, PL McCarty (1995) Field evaluation of in situ aerobic cometabolism of trichloroethylene and three dichloroethylene isomers using phenol and toluene as primary substrates. Environ Sci Technol 29 1628-1637. [Pg.232]

Fries MR, GD Hopkins, PL McCarty, LJ Forney, JM Tiedje (1998a) Microbial succession during a field evaluation of phenol and toluene as the primary substrates for trichloroethene cometabolism. Appl Environ Microbiol 63 1515-1522. [Pg.614]

In some cases, microorganisms can transform a contaminant, but they are not able to use this compound as a source of energy or carbon. This biotransformation is often called co-metabolism. In co-metabolism, the transformation of the compound is an incidental reaction catalyzed by enzymes, which are involved in the normal microbial metabolism.33 A well-known example of co-metabolism is the degradation of (TCE) by methanotrophic bacteria, a group of bacteria that use methane as their source of carbon and energy. When metabolizing methane, methanotrophs produce the enzyme methane monooxygenase, which catalyzes the oxidation of TCE and other chlorinated aliphatics under aerobic conditions.34 In addition to methane, toluene and phenol have been used as primary substrates to stimulate the aerobic co-metabolism of chlorinated solvents. [Pg.536]

The calcein-AM assay [82-84] and cytotoxicity assays (e.g., performed with doxorubicin) [77, 78] are both basically competition assays. The accumulation of a primary substrate (e.g., calcein-AM or doxorubicin) in the cytosol of living cells is measured after addition of a second substrate (also called modifier or reverser) that reduces the efflux of the primary substrate. In the case of the calcein-AM assay, the primary substrate, calcein-AM, is hydrolyzed as soon as it reaches the cytosol, and the highly fluorescent hydrolysis product (calcein) can be determined using fluorescence spectroscopy. The more effective the reversal agent, the stronger is the increase in calcein fluorescence. Data can be quantified in terms of inhibitory constants, IQ, of the reversal agent. [Pg.480]

Many secondary phenolic compounds are derived from the amino acids phenylalanine and tyrosine and therefore contain an aromatic ring and a three-carbon side chain (see Fig. 3.3). Phenylalanine is the primary substrate for phenylpropanoid synthesis in most higher vascular plants, with tyrosine being used to a lesser extent in some plants. Because of their common structure, compounds derived from these amino acids are collectively called phenylpropanoids. [Pg.92]

Since anaerobic azo dye reduction is an oxidation-reduction reaction, a liable electron donor is essential to achieve effective color removal rates. It is known that most of the bond reductions occurred during active bacterial growth [48], Therefore, anaerobic azo dye reduction is extremely depended on the type of primary electron donor. It was reported that ethanol, glucose, H2/CO2, and formate are effective electron donors contrarily, acetate and other volatile fatty acids are normally known as poor electron donors [42, 49, 50]. So far, because of the substrate itself or the microorganisms involved, with some primary substrates better color removal rates have been obtained, but with others no effective decolorization have been observed [31]. Electron donor concentration is also important to achieve... [Pg.66]

Wang CC, Lee CM, Lu CJ et al (2000) Biodegradation of 2, 4, 6-trichlorophenol in the presence of primary substrate by immobilized pure culture bacteria. Chemosphere 41 1873-1879... [Pg.83]

Step 1 is fundamentally an SN2 reaction (kinetics related to structural variations of the reactants,16 8 retention of stereochemistry at phosphorus912), except in those instances wherein a particularly stable carbocation is produced from the haloalkane component.13 A critical experiment concerned with verification of the Sn2 character of Step 1 by inversion of configuration at the carbon from which the leaving group is displaced was inconclusive because elimination rather than substitution occurred with the chiral secondary haloalkane used.14 An alternative experiment suggested by us in our prior review using a chiral primary substrate apparently has not yet been performed.2... [Pg.43]

Although formation of primary vinyl cation was disproved by the chirality probe approach, a vinyl cationic intermediate can be generated from a primary substrate via participation if a more stable cation could result. Unsymmetrically substituted 2,2-dialkylvinyl iodonium salt 24 gave mainly rearranged products on solvolysis.15 The products involve those of the 1,2-shift of either of the alkyl groups on the p position (Scheme 4). Those formed from migration of the alkyl... [Pg.89]

In some applications, it is necessary to inject nutrients or other chemicals into the aquifer to effect a more efficient restoration. Most of the time, additives are injected into separate wells. These additives may include surfactants, nutrients, pH adjustment chemicals, or additional carbon sources. Some success has been achieved with injected heated air to improve volatility of the chemicals. Where a small quantity of methane (as a primary substrate) is required, it can be added with the injection air. The lower explosive limit (LEL) of methane in air is 5% thus, extreme care must be used to control the mixture and the methane content of the vapor that reaches the surface. [Pg.274]

Mikami and Yoshida extended the scope of this method considerably by using propargyl phosphates and chiral proton sources [94], The propargylic phosphates thereby have been found to be advantageous owing to their high reactivity towards palladium and the extremely low nudeophilicity of the phosphate group [95]. In some cases, it was even possible to obtain allenes from primary substrates, e.g. ester 194 (Scheme 2.60) [96]. A notable application of this transformation is the synthesis of the allenic isocarbacydin derivative 197 from its precursor 196 [97]. [Pg.84]


See other pages where Substrates primary is mentioned: [Pg.555]    [Pg.137]    [Pg.746]    [Pg.90]    [Pg.381]    [Pg.433]    [Pg.448]    [Pg.43]    [Pg.231]    [Pg.175]    [Pg.126]    [Pg.535]    [Pg.833]    [Pg.395]    [Pg.255]    [Pg.480]    [Pg.54]    [Pg.61]    [Pg.67]    [Pg.195]    [Pg.299]    [Pg.234]    [Pg.147]   
See also in sourсe #XX -- [ Pg.212 , Pg.213 , Pg.227 ]

See also in sourсe #XX -- [ Pg.214 ]

See also in sourсe #XX -- [ Pg.214 ]




SEARCH



Primary substrates 302 INDEX

Primary substrates, elimination reactions

Substrate primary, for catalytic cycle

© 2024 chempedia.info