Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Currents, the nature

The results of the audits indicate that the delineation of zones is easy to put into a plan hut difficult to keep current. The nature of remedial work demands fiexihility. As sites become remediated, the exclusion zone boundaries change. This is not a situation that is easily handled in a plan, but should be reviewed as other site documents on a predetermined regular basis. [Pg.200]

The approach pursued in this and the next chapter is focused on the common mathematical characteristics of boundary processes. Most of the necessary mathematics has been developed in Chapter 18. Yet, from a physical point of view, many different driving forces are responsible for the transfer of mass. For instance, air-water exchange (Chapter 20), described as either bottleneck or diffusive boundary, is controlled by the turbulent energy flux produced by wind and water currents. The nature of these and other phenomena will be discussed once the mathematical structure of the models has been developed. [Pg.839]

Nature of current The nature of the driving force for the electron current is not definitely known. For example, the electron mobility is not expected to be a constant because the relaxation time approximation, which is used to derive Eq. (18), is not necessarily valid. [Pg.448]

As illustrated in the previous sections, the interfacial potential at the tubular working electrode, the magnitude of the ES current, the nature of the electrode surface, and mass transport to the electrode are all important parameters in determining which reactions can occur at the emitter electrode, their rates, and their extents. In this section, we describe alternatives to the most common tubular electrode emitter configurations and their utilities in various ES-MS experiments. [Pg.93]

Studies to determine the nature of intermediate species have been made on a variety of transition metals, and especially on Pt, with emphasis on the Pt(lll) surface. Techniques such as TPD (temperature-programmed desorption), SIMS, NEXAFS (see Table VIII-1) and RAIRS (reflection absorption infrared spectroscopy) have been used, as well as all kinds of isotopic labeling (see Refs. 286 and 289). On Pt(III) the surface is covered with C2H3, ethylidyne, tightly bound to a three-fold hollow site, see Fig. XVIII-25, and Ref. 290. A current mechanism is that of the figure, in which ethylidyne acts as a kind of surface catalyst, allowing surface H atoms to add to a second, perhaps physically adsorbed layer of ethylene this is, in effect, a kind of Eley-Rideal mechanism. [Pg.733]

At low currents, the rate of change of die electrode potential with current is associated with the limiting rate of electron transfer across the phase boundary between the electronically conducting electrode and the ionically conducting solution, and is temied the electron transfer overpotential. The electron transfer rate at a given overpotential has been found to depend on the nature of the species participating in the reaction, and the properties of the electrolyte and the electrode itself (such as, for example, the chemical nature of the metal). [Pg.603]

The second class of atomic manipulations, the perpendicular processes, involves transfer of an adsorbate atom or molecule from the STM tip to the surface or vice versa. The tip is moved toward the surface until the adsorption potential wells on the tip and the surface coalesce, with the result that the adsorbate, which was previously bound either to the tip or the surface, may now be considered to be bound to both. For successful transfer, one of the adsorbate bonds (either with the tip or with the surface, depending on the desired direction of transfer) must be broken. The fate of the adsorbate depends on the nature of its interaction with the tip and the surface, and the materials of the tip and surface. Directional adatom transfer is possible with the apphcation of suitable junction biases. Also, thermally-activated field evaporation of positive or negative ions over the Schottky barrier formed by lowering the potential energy outside a conductor (either the surface or the tip) by the apphcation of an electric field is possible. FIectromigration, the migration of minority elements (ie, impurities, defects) through the bulk soHd under the influence of current flow, is another process by which an atom may be moved between the surface and the tip of an STM. [Pg.204]

The oxygen contribution from these reactions is dependent on the nature of the anode material and the pH of the medium. The current efficiency for oxygen is generally 1—3% using commercial metal anodes. If graphite anodes are used, another overall reaction leading to inefficiency is the oxidation of... [Pg.482]

There was a logical progression of technology development from continuous to piezoelecttic ink jet. Designers of continuous ink-jet systems ensure that the ink stream breaks into drops of constant size and frequency by applying vibrational energy with piezoelecttic crystals at the natural frequency of drop formation. This overcomes the effects of any random forces from noise, vibrations, or air currents. [Pg.53]

Human exposure evaluation is used in describing the nature and size of the population exposed to a substance and the magnitude and duration of their exposure. The evaluation could concern past or current exposures, or exposure anticipated in the future. [Pg.226]

F r d ic Current. The double layer is a leaky capacitor because Faradaic current flows around it. This leaky nature can be represented by a voltage-dependent resistance placed in parallel and called the charge-transfer resistance. Basically, the electrochemical reaction at the electrode surface consists of four thermodynamically defined states, two each on either side of a transition state. These are (11) (/) oxidized species beyond the diffuse double layer and n electrons in the electrode and (2) oxidized species within the outer Helmholtz plane and n electrons in the electrode, on one side of the transition state and (J) reduced species within the outer Helmholtz plane and (4) reduced species beyond the diffuse double layer, on the other. [Pg.50]

Problem Definition InteUigent selection of a separator requires a careful and complete statement of the nature of the separation problem. Focusing narrowly on the specific problem, however, is not sufficient, especi ly if the separation is to be one of the steps in a new process. Instead, the problem must be defined as broadly as possible, beginning with the chemical reactor or other source of material to be separated and ending with the separated materials in their desired final form. In this way the influence of preceding and subsequent process steps on the separation step will be iUuminated. Sometimes, of course, the new separator is proposed to replace an existing unit the new separator must then fit into the current process and accept feed materials of more or less fixed characteristics. At other times the separator is only one item in a train of new equipment, all parts of which must work in harmony if the separator is to be effective. [Pg.1749]

Electrochemical reduction of iridium solutions in the presence azodye (acid chrome dark blue [ACDB]) on slowly dropping mercury electrode is accompanied by occurrence of additional peaks on background acetic-ammonium buffer solutions except for waves of reduction azodye. Potentials of these peaks are displaced to cathode region of the potential compared to the respective peaks of reduction of the azodye. The nature of reduction current in iridium solutions in the presence ACDB is diffusive with considerable adsorptive limitations. The method of voltamiuetric determination of iridium with ACDB has been developed (C 1-2 x 10 mol/L). [Pg.118]


See other pages where Currents, the nature is mentioned: [Pg.1216]    [Pg.1]    [Pg.256]    [Pg.108]    [Pg.351]    [Pg.153]    [Pg.159]    [Pg.1216]    [Pg.1]    [Pg.256]    [Pg.108]    [Pg.351]    [Pg.153]    [Pg.159]    [Pg.507]    [Pg.75]    [Pg.484]    [Pg.1937]    [Pg.2732]    [Pg.381]    [Pg.437]    [Pg.245]    [Pg.378]    [Pg.190]    [Pg.265]    [Pg.242]    [Pg.324]    [Pg.133]    [Pg.546]    [Pg.50]    [Pg.1106]    [Pg.1855]    [Pg.2192]    [Pg.2440]    [Pg.118]    [Pg.160]    [Pg.58]    [Pg.71]    [Pg.72]    [Pg.72]    [Pg.75]    [Pg.77]    [Pg.82]   
See also in sourсe #XX -- [ Pg.222 ]




SEARCH



Nature of the Current-Voltage Curve

The Nature of Currents

© 2024 chempedia.info