Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition nanostructures

Keywords hydrogen accumulator, hydrated methane, polymorphism, phase transition, nanostructure of ice, modeling... [Pg.303]

To demonstrate the utilities of salt inclusion, we review the selected zeoUte-like transition-metal-containing open frameworks (TMCOFs) and then describe the structures of non-centrosymmetric solids (NCSs) and, finally, report crystalline solids containing a periodic array of transition metal nanostructures. In particular, we will address the issues concerning the role that molten salt has in... [Pg.240]

Solids Containing Periodic Arrays of Transition-metal Nanostructures... [Pg.247]

In this second edition the text has been revised and new scientific findings have been taken into consideration. For example, many recently discovered modifications of the elements have been included, most of which occur at high pressures. The treatment of symmetry has been shifted to the third chapter and the aspect of symmetry is given more attention in the following chapters. New sections deal with quasicrystals and other not strictly crystalline solids, with phase transitions and with the electron localization function. There is a new chapter on nanostructures. Nearly all figures have been redrawn. [Pg.275]

Architectural control of transition metal-directed assembly to construct well-arranged metallo-macrocycles is one of the current research areas to create organized nanostructures for advanced materials.510-513... [Pg.599]

Stang, P. J. Olenyuk, B. Transition-metal-mediated self assembly of discrete manoscopic species with well-defined structures and shapes. In Handbook of Nanostructured Materials and Nanotechnology, Nalwa, H. S.. Ed. Academic Press San Deigo, 2000, Vol. 5, 167-224. [Pg.740]

Tian Z.Q., Ren B., Wu D.Y., Surface-enhanced Raman scattering From noble to transition metals and from rough surfaces to ordered nanostructures, J. Phys. Chem. B 2002 106 9463-9483. [Pg.255]

Jeong and coworkers have reported peptide-based thermo-gelling systems using PEG-b-polyAla as an injectable cellular scaffold [315]. The polymer aqueous solution undergoes sol-gel transition as temperature increases. The fraction of the p-sheet structure of the poly Ala dictated the population and thickness of fibrous nanostructure in the hydrogel, which affected the proliferation and protein... [Pg.101]

The main objective of the Workshop was to bring together people working in areas of Fundamental physics relating to Quantum Field Theory, Finite Temperature Field theory and their applications to problems in particle physics, phase transitions and overlap regions with the areas of Quantum Chaos. The other important area is related to aspects of Non-Linear Dynamics which has been considered with the topic of chaology. The applications of such techniques are to mesoscopic systems, nanostructures, quantum information, particle physics and cosmology. All this forms a very rich area to review critically and then find aspects that still need careful consideration with possible new developments to find appropriate solutions. [Pg.6]

Various works has pointed out the role of the nanostructure of the catalysts in their design.18-26 There is a general agreement that the nanostructure of the oxide particles is a key to control the reactivity and selectivity. Several papers have discussed the features and properties of nanostructured catalysts and oxides,27-41 but often the concept of nanostructure is not clearly defined. A heterogeneous catalyst should be optimized on a multiscale level, e.g. from the molecular level to the nano, micro- and meso-scale level.42 Therefore, not only the active site itself (molecular level) is relevant, but also the environment around the active site which orients or assist the coordination of the reactants, may induce sterical constrains on the transition state, and affect the short-range transport effects (nano-scale level).42 The catalytic surface process is in series with the transport of the reactants and the back-diffusion of the products which should be concerted with the catalytic transformation. Heat... [Pg.365]

Measurements of the optical properties in this range of wavelengths can probe the fundamental electronic transitions in these nanostructures. Some of the aforementioned effects have in fact been experimentally revealed in this series of experiments (90). As mentioned above, the IF nanoparticles in this study were prepared by a careful sulfidization of oxide nanoparticles. Briefly, the reaction starts on the surface of the oxide nanoparticle and proceeds inward, and hence the number of closed (fullerene-like) sulfide layers can be controlled quite accurately during the reaction. Also, the deeper the sulfide layer in the nanoparticle, the smaller is its radius and the larger is the strain in the nanostructure. Once available in sufficient quantities, the absorption spectra of thin films of the fullerene-like particles and nanotubes were measured at various temperatures (4-300 K). The excitonic nature of the absorption of the nanoparticles was established, which is a manifestation of the semiconducting nature of the material. Furthermore, a clear red shift in the ex-citon energy, which increased with the number of sulfide layers of the nanoparticles, was also observed (see Fig. 21). The temperature dependence of the exciton... [Pg.299]

Besides the applications of the electrophilicity index mentioned in the review article [40], following recent applications and developments have been observed, including relationship between basicity and nucleophilicity [64], 3D-quantitative structure activity analysis [65], Quantitative Structure-Toxicity Relationship (QSTR) [66], redox potential [67,68], Woodward-Hoffmann rules [69], Michael-type reactions [70], Sn2 reactions [71], multiphilic descriptions [72], etc. Molecular systems include silylenes [73], heterocyclohexanones [74], pyrido-di-indoles [65], bipyridine [75], aromatic and heterocyclic sulfonamides [76], substituted nitrenes and phosphi-nidenes [77], first-row transition metal ions [67], triruthenium ring core structures [78], benzhydryl derivatives [79], multivalent superatoms [80], nitrobenzodifuroxan [70], dialkylpyridinium ions [81], dioxins [82], arsenosugars and thioarsenicals [83], dynamic properties of clusters and nanostructures [84], porphyrin compounds [85-87], and so on. [Pg.189]

A synthetic alternative to this is the chemical reduction of metal salts in the presence of extremely hydrophilic surfactants have yielded isolable nanometal colloids having at least 100 mg of metal per litre of water [105], The wide range of surfactants conveniently used to prepare hydrosols with very good redispersibility properties include amphiphilic betaines A1-A4, cationic, anionic, nonionic and even environmentally benign sugar soaps. Table 3.1 presents the list of hydrophilic stabilizers used for the preparation of nanostructured colloidal metal particles, and Table 3.2 shows the wide variety of transition metal mono- and bi-metallic hydrosols formed by this method [105,120],... [Pg.71]

Reetz, M.T., Helbig W., and Quaiser, S.A., Electrochemical methods in the synthesis of nanostructured transition metal clusters, in Active Metals, Ftirstner, A., Ed., VCH, Weinheim, 1996, p. 279. [Pg.87]

Reetz, M.T. and Helbig, W., Size-selective synthesis of nanostructured transition metal clusters, J. Am. Chem. Soc., 116,7401, 1994. [Pg.90]

Reetz, M.T. and Maase, M., Redox-controlled size-selective fabrication of nanostructured transition metal colloids, Adv. Mater., 11, 773,1999. [Pg.90]

Endohedral doping (encapsulation) of other materials within carbon nanostructures can be carried out by nano-capillary effects or during synthesis (Fig. 4.3(b)). A great variety of halides, oxides, metals and alloys have been encapsulated within CNTs [36-41]. When transition metals are encapsulated, the entire sample can exhibit high magnetic coercivities ca. 0.22 T [42,43]. The encapsulation of C60 molecules can also be accomplished and if the material is heat treated at high temperatures... [Pg.74]

Stoyanov, S.R. Titov, A.V. Krai, P., Design and Modeling of Transition Metal-doped Carbon Nanostructures. Coord. Chem. Rev. 2009, 253 2852-2871. [Pg.451]


See other pages where Transition nanostructures is mentioned: [Pg.262]    [Pg.55]    [Pg.240]    [Pg.242]    [Pg.247]    [Pg.126]    [Pg.213]    [Pg.453]    [Pg.648]    [Pg.184]    [Pg.102]    [Pg.288]    [Pg.533]    [Pg.628]    [Pg.150]    [Pg.317]    [Pg.1]    [Pg.133]    [Pg.242]    [Pg.426]    [Pg.74]    [Pg.668]    [Pg.671]    [Pg.29]    [Pg.52]    [Pg.97]    [Pg.385]    [Pg.386]    [Pg.422]    [Pg.115]   
See also in sourсe #XX -- [ Pg.113 ]




SEARCH



Predictions for hydrogen storage in carbon nanostructures coated with light transition metals

Silicon nanostructure, structural transition

Structural Transition in Silicon Nanostructures

© 2024 chempedia.info