Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition metal titanium

The interstitial carbides These are formed by the transition metals (e.g. titanium, iron) and have the general formula M, C. They are often non-stoichiometric—the carbon atoms can occupy some or all of the small spaces between the larger metal atoms, the arrangement of which remains essentially the same as in the pure metal (cf. the interstitial hydrides). [Pg.201]

Titanium is not a rare element it is the most abundant transition metal after iron, and is widely distributed in the earth s surface, mainly as the dioxide TiOj and ilmenite FeTi03. It has become of commercial importance since World War II mainly because of its high strength-weight ratio (use in aircraft, especially supersonic), its... [Pg.369]

In this oxidation state the titanium atom has formally lost its 3d and 4s electrons as expected, therefore, it forms compounds which do not have the characteristics of transition metal compounds, and which indeed show strong resemblances to the corresponding compounds of the lower elements (Si, Ge, Sn, Pb) of Group IV—the group into which Mendeleef put titanium in his original form of the periodic table. [Pg.370]

Section 14 15 Coordination polymerization of ethylene and propene has the biggest eco nomic impact of any organic chemical process Ziegler-Natta polymer ization IS carried out using catalysts derived from transition metals such as titanium and zirconium tt Bonded and ct bonded organometallic com pounds are intermediates m coordination polymerization... [Pg.617]

Transesterification of methyl methacrylate with the appropriate alcohol is often the preferred method of preparing higher alkyl and functional methacrylates. The reaction is driven to completion by the use of excess methyl methacrylate and by removal of the methyl methacrylate—methanol a2eotrope. A variety of catalysts have been used, including acids and bases and transition-metal compounds such as dialkjitin oxides (57), titanium(IV) alkoxides (58), and zirconium acetoacetate (59). The use of the transition-metal catalysts allows reaction under nearly neutral conditions and is therefore more tolerant of sensitive functionality in the ester alcohol moiety. In addition, transition-metal catalysts often exhibit higher selectivities than acidic catalysts, particularly with respect to by-product ether formation. [Pg.248]

High density polyethylene (HDPE) is defined by ASTM D1248-84 as a product of ethylene polymerisation with a density of 0.940 g/cm or higher. This range includes both homopolymers of ethylene and its copolymers with small amounts of a-olefins. The first commercial processes for HDPE manufacture were developed in the early 1950s and utilised a variety of transition-metal polymerisation catalysts based on molybdenum (1), chromium (2,3), and titanium (4). Commercial production of HDPE was started in 1956 in the United States by Phillips Petroleum Company and in Europe by Hoechst (5). HDPE is one of the largest volume commodity plastics produced in the world, with a worldwide capacity in 1994 of over 14 x 10 t/yr and a 32% share of the total polyethylene production. [Pg.379]

HDPE resias are produced ia industry with several classes of catalysts, ie, catalysts based on chromium oxides (Phillips), catalysts utilising organochromium compounds, catalysts based on titanium or vanadium compounds (Ziegler), and metallocene catalysts (33—35). A large number of additional catalysts have been developed by utilising transition metals such as scandium, cobalt, nickel, niobium, molybdenum, tungsten, palladium, rhodium, mthenium, lanthanides, and actinides (33—35) none of these, however, are commercially significant. [Pg.383]

Sodium ethoxide was the first metal alkoxide described in 1837 (1). The alkoxides of many transition metals were developed after World War II (2—5). Today some alkoxides, including those of sodium, potassium, magnesium, aluminum, zirconium, and titanium, are commercially important. The name metal alkoxides is preferred, although metal alcoholates is also used. [Pg.21]

Stmctures are highly varied among the transition metals. The titanium atom in titanium tetraethoxide has the coordination number 6 (Fig. 1). The corresponding zirconium compound, with coordination number 8, has a different stmcture (Fig. 2). Metal alkoxides are colored when the corresponding metal ions are colored, otherwise they are not. [Pg.23]

Magnesium reacts slowly at lower temperatures to give the amide, as do all active metals this reaction is catalyzed by transition metal ions. Aluminum nitride [24304-00-5] AIN, barium nitride [12047-79-9] Ba2N2, calcium nitride [12013-82-0] Ca2N2, strontium nitride [12033-82-8], Sr2N2, and titanium nitride [25583-20-4], TiN, may be formed by heating the corresponding amides. [Pg.338]

Cocatalysts, such as diethylzinc and triethylboron, can be used to alter the molecular-weight distribution of the polymer (89). The same effect can also be had by varying the transition metal in the catalyst chromium-based catalyst systems produce polyethylenes with intermediate or broad molecular-weight distributions, but titanium catalysts tend to give rather narrow molecular-weight distributions. [Pg.203]

MetaUic conduction occurs in transition-metal oxides such as ReO, vanadium(II) oxide [12035-98-2] VO, titanium(II) oxide [12137-20-17,... [Pg.357]

Transition metal-catalyzed epoxidations, by peracids or peroxides, are complex and diverse in their reaction mechanisms (Section 5.05.4.2.2) (77MI50300). However, most advantageous conversions are possible using metal complexes. The use of t-butyl hydroperoxide with titanium tetraisopropoxide in the presence of tartrates gave asymmetric epoxides of 90-95% optical purity (80JA5974). [Pg.36]

In many of the transition metals, such as titanium, vanadium and molybdenum, carbon, nitrogen and oxygen atoms can fit into octahedral holes, and hydrogen into the teualredral holes. The fit here is estimated by assuming the atoms all have incompressible radii, and die contact must be such tlrat tire interstitial atoms do not rattle around in the holes. [Pg.182]

As indicated by the title, these processes are largely due to the work of Ziegler and coworkers. The type of polymerisation involved is sometimes referred to as co-ordination polymerisation since the mechanism involves a catalyst-monomer co-ordination complex or some other directing force that controls the way in which the monomer approaches the growing chain. The co-ordination catalysts are generally formed by the interaction of the alkyls of Groups I-III metals with halides and other derivatives of transition metals in Groups IV-VIII of the Periodic Table. In a typical process the catalyst is prepared from titanium tetrachloride and aluminium triethyl or some related material. [Pg.209]

Mention has already been made in this chapter of metallocene-catalysed polyethylene (see also Chapter 2). Such metallocene catalysts are transition metal compounds, usually zirconium or titanium. Incorporated into a cyclopentadiene-based structure. During the late 1990s several systems were developed where the new catalysts could be employed in existing polymerisation processes for producing LLDPE-type polymers. These include high pressure autoclave and... [Pg.211]

Lewis acids are defined as molecules that act as electron-pair acceptors. The proton is an important special case, but many other species can play an important role in the catalysis of organic reactions. The most important in organic reactions are metal cations and covalent compounds of metals. Metal cations that play prominent roles as catalysts include the alkali-metal monocations Li+, Na+, K+, Cs+, and Rb+, divalent ions such as Mg +, Ca +, and Zn, marry of the transition-metal cations, and certain lanthanides. The most commonly employed of the covalent compounds include boron trifluoride, aluminum chloride, titanium tetrachloride, and tin tetrachloride. Various other derivatives of boron, aluminum, and titanium also are employed as Lewis acid catalysts. [Pg.233]

Trdtismrtalations witli first row transition metal elements sudi as titanium or manganese have produced usefid syntlietic applications. Organotitanate species of type 123 show tlie advantage of higli S 2 selectivity in tlie emit stereocliemistry of tlie resulting copperil) intetenediates iSclieme 2.56) [119, 120]. [Pg.70]

Ziegler-Natta catalysts-—there are many different formulations—are organometallic transition-metal complexes prepared by treatment of an alkyl-aluminum with a titanium compound. Triethylaluminum and titanium tetrachloride form a typical preparation. [Pg.1209]

Recently some information became available on a new type of highly active one-component ethylene polymerization catalyst. This catalyst is prepared by supporting organometallic compounds of transition metals containing different types of organic ligands [e.g. benzyl compounds of titanium and zirconium 9a, 132), 7r-allyl compounds of various transition metals 8, 9a, 133), 7r-arene 134, 185) and 71-cyclopentadienyl 9, 136) complexes of chromium]. [Pg.187]

The formation of high polymers of olefins in the presence of titanium halogenides with no specially added organometallic co-catalysts was discovered long ago [see (147), and the references therein], A complete description of various alkyl-free polymerization catalysts based on the use of transition metal chlorides may be found in the review by Boor (17), where a comparison of these catalysts with traditional two-component systems is given. [Pg.192]

The formation of surface defects of a crystal lattice. It was observed while using crystal compounds of transition metals as catalysts [e.g. as was shown by Arlman (171, 173), for a TiCl3 surface defects appear on the lateral faces of the crystal]. In this case low surface concentration of the propagation centers should be expected, as is illustrated in the case of polymerization by titanium dichloride (158). The observed... [Pg.203]

The formation of the active metal-carbon bond as a result of the interaction of low-valent ions of the transition metal with olefin is the most intriguing step of the polymerization process by one-component catalysts. The possibility of the formation of the transition metal-carbon bond resulting from the reaction of titanium low-valent ions with ethylene is shown in Dzsabiev et al. (182) ... [Pg.204]


See other pages where Transition metal titanium is mentioned: [Pg.410]    [Pg.626]    [Pg.645]    [Pg.410]    [Pg.626]    [Pg.645]    [Pg.2902]    [Pg.491]    [Pg.262]    [Pg.379]    [Pg.383]    [Pg.383]    [Pg.397]    [Pg.398]    [Pg.122]    [Pg.122]    [Pg.126]    [Pg.248]    [Pg.205]    [Pg.534]    [Pg.2]    [Pg.127]    [Pg.210]    [Pg.152]    [Pg.191]    [Pg.236]    [Pg.188]    [Pg.174]    [Pg.196]    [Pg.202]   


SEARCH



Oxidation reactions, transition-metal Sharpless titanium

Titanium Transition metal ions

Titanium diboride-transition metal boride

Titanium metal

Titanium silicalite , transition metal

Transition metal catalysts Sharpless titanium

Transition metal catalysts titanium complexes

Transition metal oxides titanium oxide

© 2024 chempedia.info