Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Titanium dioxide oxides

Keywords Titanium dioxide Oxidation Wettability High hydrophilicity High hydrophobicity... [Pg.425]

In this section, brief fundamental reaction mechanisms for each AOP are addressed. Included as AOPs are individual and combinational processes in the use of ultraviolet (UV) irradiation, catalyzed titanium dioxide oxidation, Fenton s reagent oxidation, ozonation, peroxone oxidation, and permanganate oxidation. [Pg.42]

Titanium IV) oxide, T1O2. See titanium dioxide. Dissolves in concentrated alkali hydroxides to give titanates. Mixed metal oxides, many of commercial importance, are formed by TiOj. CaTiOj is perovskite. BaTiOa, per-ovskite related structure, is piezoelectric and is used in transducers in ultrasonic apparatus and gramophone pickups and also as a polishing compound. Other mixed oxides have the il-menite structure (e.g. FeTiOj) and the spinel structure (e.g. MgjTiO ). [Pg.400]

If the normal carbonate is used, the basic carbonate or white lead, Pb(OH),. 2PbCO,. is precipitated. The basic carbonate was used extensively as a base in paints but is now less common, having been largely replaced by either titanium dioxide or zinc oxide. Paints made with white lead are not only poisonous but blacken in urban atmospheres due to the formation of lead sulphide and it is hardly surprising that their use is declining. [Pg.202]

Titanium dioxide is extensively used for both house paint and artist s paint, because it is permanent and has good covering power. Titanium oxide pigment accounts for the largest use of the element. Titanium paint is an excellent reflector of infrared, and is extensively used in solar observatories where heat causes poor seeing conditions. [Pg.76]

Rochelle salt, see Potassium sodium tartrate 4-water Rock crystal, see Silicon dioxide Rutile, see Titanium(IV) oxide... [Pg.275]

Titanium dioxide-ferric oxide coated mica... [Pg.997]

White Pigments. Opaque white pigments commonly used in inks, in order of decreasing opacity, ate titanium dioxide and zinc oxide. TiO is by fat the most popular white pigment. Mixtures of whites ate often made with the various colored pigments to add opacity or to make pastel colors. [Pg.248]

The second form consists of Pt metal but the iridium is present as iridium dioxide. Iridium metal may or may not be present, depending on the baking temperature (14). Titanium dioxide is present in amounts of only a few weight percent. The analysis of these coatings suggests that the platinum metal acts as a binder for the iridium oxide, which in turn acts as the electrocatalyst for chlorine discharge (14). In the case of thermally deposited platinum—iridium metal coatings, these may actually form an intermetallic. Both the electrocatalytic properties and wear rates are expected to differ for these two forms of platinum—iridium-coated anodes. [Pg.121]

Catalysis (qv) refers to a process by which a substance (the catalyst) accelerates an otherwise thermodynamically favored but kiaeticahy slow reaction and the catalyst is fully regenerated at the end of each catalytic cycle (1). When photons are also impHcated in the process, photocatalysis is defined without the implication of some special or specific mechanism as the acceleration of the prate of a photoreaction by the presence of a catalyst. The catalyst may accelerate the photoreaction by interaction with a substrate either in its ground state or in its excited state and/or with the primary photoproduct, depending on the mechanism of the photoreaction (2). Therefore, the nondescriptive term photocatalysis is a general label to indicate that light and some substance, the catalyst or the initiator, are necessary entities to influence a reaction (3,4). The process must be shown to be truly catalytic by some acceptable and attainable parameter. Reaction 1, in which the titanium dioxide serves as a catalyst, may be taken as both a photocatalytic oxidation and a photocatalytic dehydrogenation (5). [Pg.398]

Heterogeneous Photocatalysis. Heterogeneous photocatalysis is a technology based on the irradiation of a semiconductor (SC) photocatalyst, for example, titanium dioxide [13463-67-7] Ti02, zinc oxide [1314-13-2] ZnO, or cadmium sulfide [1306-23-6] CdS. Semiconductor materials have electrical conductivity properties between those of metals and insulators, and have narrow energy gaps (band gap) between the filled valence band and the conduction band (see Electronic materials Semiconductors). [Pg.400]

The catalyst combines two essential ingredients found in eadier catalysts, vanadium oxide and titanium dioxide, which are coated on an inert, nonporous carrier in a layer 0.02- to 2.0-mm thick (13,16). Other elements such as phosphoms are also used. Ring-shaped supports are used instead of spherical supports to give longer catalyst life, less pressure drop though the reactor, and higher yields (17,18). Half rings are even better and allow more catalyst to be loaded (18). [Pg.483]

Other pigments are consumed in considerably smaller amounts. Moreover, the market data for these pigments are not as readily available as those for carbon blacks, titanium dioxide, and iron oxides. [Pg.7]

The most common white pigments are titanium dioxide, 2inc oxide, leaded 2inc oxide, 2inc sulfide [1314-98-3], and Hthopone, a mixture of 2inc sulfide and barium sulfate [7727-43-7]. The use of lead whites and antimony oxides has been decreasing steadily for environmental reasons. [Pg.7]

About 100,000 t of titanium dioxide aimuaHy are used as formulation components in the production of glass (qv), ceramics, electroceramics, catalysts, and in the production of mixed-metal oxide pigments. [Pg.9]

Putile Ceramic Pigments. StmcturaHy, aH mtile pigments are derived from the most stable titanium dioxide stmcture, ie, mtile. The crystal stmcture of mtile is very common for AX2-type compounds such as the oxides of four valent metals, eg, Ti, V, Nb, Mo, W, Mn, Ru, Ge, Sn, Pb, and Te as weH as haHdes of divalent elements, eg, fluorides of Mg, Mn, Fe, Co, Ni, and Zn. [Pg.13]

Catalytic alkylation of aniline with diethyl ether, in the presence of mixed metal oxide catalysts, preferably titanium dioxide in combination with molybdenum oxide and/or ferric oxide, gives 63% V/-alkylation and 12% ring alkylation (14). [Pg.229]

Chemical pigments or synthetics may be metal compounds. A good example is white titanium dioxide. Other chemical pigments include cadmium sulfide colors, iron blue, and several synthetic versions of iron oxides. [Pg.338]

Research-grade material may be prepared by reaction of pelleted mixtures of titanium dioxide and boron at 1700°C in a vacuum furnace. Under these conditions, the oxygen is eliminated as a volatile boron oxide (17). Technical grade (purity > 98%) material may be made by the carbothermal reduction of titanium dioxide in the presence of boron or boron carbide. The endothermic reaction is carried out by heating briquettes made from a mixture of the reactants in electric furnaces at 2000°C (11,18,19). [Pg.117]

Hydrated Titanium Oxides. Hydroxides of Ti(Il) (black) and Ti(Ill) (brown) are precipitated when an alkaU metal hydroxide is added to a solution of the corresponding salt. These precipitates, though difficult to purify (45), are powerful reduciag agents and readily oxidize ia air to form a hydrated titanium dioxide. [Pg.120]

Hydrolysis of solutions of Ti(IV) salts leads to precipitation of a hydrated titanium dioxide. The composition and properties of this product depend critically on the precipitation conditions, including the reactant concentration, temperature, pH, and choice of the salt (46—49). At room temperature, a voluminous and gelatinous precipitate forms. This has been referred to as orthotitanic acid [20338-08-3] and has been represented by the nominal formula Ti02 2H20 (Ti(OH). The gelatinous precipitate either redissolves or peptizes to a colloidal suspension ia dilute hydrochloric or nitric acids. If the suspension is boiled, or if precipitation is from hot solutions, a less-hydrated oxide forms. This has been referred to as metatitanic acid [12026-28-7] nominal formula Ti02 H2O (TiO(OH)2). The latter precipitate is more difficult to dissolve ia acid and is only soluble ia concentrated sulfuric acid or hydrofluoric acid. [Pg.120]

Precipitation of a hydrated titanium oxide by mixing aqueous solutions of titanium chloride with alkaU forms the precipitation seeds, which are used to initiate precipitation in the Mecklenburg (50) variant of the sulfate process for the production of pigmentary titanium dioxide. Hydrolysis of aqueous solutions of titanium chloride is also used for the preparation of high purity (>99.999%) titanium dioxide for electroceramic appHcations (see Ceramics). In addition, hydrated titanium dioxide is used as a pure starting material for the manufacture of other titanium compounds. [Pg.120]

A high purity titanium dioxide of poorly defined crystal form (ca 80% anatase, 20% mtile) is made commercially by flame hydrolysis of titanium tetrachloride. This product is used extensively for academic photocatalytic studies (70). The gas-phase oxidation of titanium tetrachloride, the basis of the chloride process for the production of titanium dioxide pigments, can be used for the production of high purity titanium dioxide, but, as with flame hydrolysis, the product is of poorly defined crystalline form unless special dopants are added to the principal reactants (71). [Pg.121]

Two pigment production routes ate in commercial use. In the sulfate process, the ore is dissolved in sulfuric acid, the solution is hydrolyzed to precipitate a microcrystalline titanium dioxide, which in turn is grown by a process of calcination at temperatures of ca 900—1000°C. In the chloride process, titanium tetrachloride, formed by chlorinating the ore, is purified by distillation and is then oxidized at ca 1400—1600°C to form crystals of the required size. In both cases, the taw products are finished by coating with a layer of hydrous oxides, typically a mixture of siUca, alumina, etc. [Pg.122]

Alkaline-Earth Titanates. Some physical properties of representative alkaline-earth titanates ate Hsted in Table 15. The most important apphcations of these titanates are in the manufacture of electronic components (109). The most important member of the class is barium titanate, BaTi03, which owes its significance to its exceptionally high dielectric constant and its piezoelectric and ferroelectric properties. Further, because barium titanate easily forms solid solutions with strontium titanate, lead titanate, zirconium oxide, and tin oxide, the electrical properties can be modified within wide limits. Barium titanate may be made by, eg, cocalcination of barium carbonate and titanium dioxide at ca 1200°C. With the exception of Ba2Ti04, barium orthotitanate, titanates do not contain discrete TiO ions but ate mixed oxides. Ba2Ti04 has the P-K SO stmcture in which distorted tetrahedral TiO ions occur. [Pg.127]


See other pages where Titanium dioxide oxides is mentioned: [Pg.480]    [Pg.43]    [Pg.480]    [Pg.43]    [Pg.283]    [Pg.327]    [Pg.497]    [Pg.499]    [Pg.213]    [Pg.72]    [Pg.120]    [Pg.120]    [Pg.15]    [Pg.401]    [Pg.483]    [Pg.9]    [Pg.9]    [Pg.13]    [Pg.53]    [Pg.120]    [Pg.121]    [Pg.121]    [Pg.122]    [Pg.122]    [Pg.122]    [Pg.124]    [Pg.126]   
See also in sourсe #XX -- [ Pg.25 ]




SEARCH



Oxides dioxides

Oxides titanium oxide

Titanium dioxide

Titanium oxidized

© 2024 chempedia.info